本篇文章所有数据集和代码均在我的GitHub中,
https://github.com/Microstrong0305/WeChat-zhihu-csdnblog-code/tree/master/Ensemble%20Learning/LightGBM
1/LightGBM分类和回归
LightGBM有两大类接口:LightGBM原生接口和scikit-learn接口(这一点和xgboost是一样的。)
并且LightGBM能够实现分类和回归两种任务。
2/分类任务
<1>基于LightGBM原生接口的分类
import numpy as np
import lightgbm
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score, accuracy_score
iris = datasets.load_iris()
train_x, test_x, train_y, test_y = train_test_split(iris.data, iris.target, test_size=0.3)
train_data = lightgbm.Dataset(train_x, label=train_y)
validation_data = lightgbm.Dataset(test_x, label=test_y)
params = {
'learning_rate': 0.1,
'lambda_l1': 0.1,
'lambda_l2': 0.2,
'max_depth': 4,
'objective': 'multiclass',
'num_class': 3,
lightgbm_model = lightgbm.train(params,
train_data,
valid_sets=[validation_data])
pre_y = lightgbm_model.predict(test_x)
pre_y = [list(x).index(max(x)) for x in pre_y]
print(pre_y)
print(accuracy_score(test_y, y_pred))
<2>基于Scikit-learn接口的分类
from lightgbm import LGBMClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.externals import joblib
iris = load_iris()
data = iris.data
target = iris.target
X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.2)
gbm = LGBMClassifier(num_leaves=31, learning_rate=0.05, n_estimators=20)
gbm.fit(X_train, y_train, eval_set=[(X_test, y_test)], early_stopping_rounds=5)
joblib.dump(gbm, 'loan_model.pkl')
gbm = joblib.load('loan_model.pkl')
y_pred = gbm.predict(X_test, num_iteration=gbm.best_iteration_)
print('The accuracy of prediction is:', accuracy_score(y_test, y_pred))
print('Feature importances:', list(gbm.feature_importances_))
estimator = LGBMClassifier(num_leaves=31)
param_grid = {
'learning_rate': [0.01, 0.1, 1],
'n_estimators': [20, 40]
gbm = GridSearchCV(estimator,
param_grid,
refit=True,
cv=3)
gbm.fit(X_train, y_train)
print('Best parameters found by grid search are:', gbm.best_params_)
3/回归任务
<1>基于LightGBM原生接口的回归
对于LightGBM解决回归问题,我们用Kaggle比赛中回归问题:House Prices: Advanced Regression Techniques,
地址:[https://www.kaggle.com/c/house-prices-advanced-regression-techniques](https://link.zhihu.com/?target=https%3A//www.kaggle.com/c/house-prices-advanced-regression-techniques) 来进行实例讲解。
该房价预测的训练数据集中一共有81列,第一列是Id,最后一列是label,中间79列是特征。
这79列特征中,有43列是类别型变量,33列是整数变量,3列是浮点型变量。
训练数据集中存在缺失值missing value
import pandas as pd
import lightgbm as lgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import Imputer
data = pd.read_csv('./dataset/train.csv')
y = data.SalePrice
X = data.drop(['SalePrice'], axis=1).select_dtypes(exclude=['object'])
train_X, test_X, train_y, test_y = train_test_split(X.values, y.values, test_size=0.25)
my_imputer = Imputer()
train_X = my_imputer.fit_transform(train_X)
test_X = my_imputer.transform(test_X)
lgb_train = lgb.Dataset(train_X, train_y)
lgb_eval = lgb.Dataset(test_X, test_y, reference=lgb_train)
params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': {'l2', 'auc'},
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': 1
my_model = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, early_stopping_rounds=5)
predictions = my_model.predict(test_X, num_iteration=my_model.best_iteration)
print("Mean Absolute Error : " + str(mean_absolute_error(predictions, test_y)))
<2>基于Scikit-learn接口的回归
import pandas as pd
from sklearn.model_selection import train_test_split
import lightgbm as lgb
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import Imputer
data = pd.read_csv('./dataset/train.csv')
y = data.SalePrice
X = data.drop(['SalePrice'], axis=1).select_dtypes(exclude=['object'])
train_X, test_X, train_y, test_y = train_test_split(X.values, y.values, test_size=0.25)
my_imputer = Imputer()
train_X = my_imputer.fit_transform(train_X)
test_X = my_imputer.transform(test_X)
my_model = lgb.LGBMRegressor(objective='regression', num_leaves=31, learning_rate=0.05, n_estimators=20,
verbosity=2)
my_model.fit(train_X, train_y, verbose=False)
predictions = my_model.predict(test_X)
print("Mean Absolute Error : " + str(mean_absolute_error(predictions, test_y)))
4/LightGBM调参
在上一部分中,LightGBM模型的参数有一部分进行了简单的设置,但大都使用了模型的默认参数,但默认参数并不是最好的。要想让LightGBM表现的更好,需要对LightGBM模型进行参数微调。下图展示的是回归模型需要调节的参数,分类模型需要调节的参数与此类似。
5/场景之银行预测贷款客户是否会违约