在matplotlib中,基本上有两种不同的方式来创建动画
interactive mode
使用
plt.ion()
来打开交互式更多。即使
show
还没有被调用,这也会创建一个绘图。可以通过调用
plt.draw()
或对于动画来说,调用
plt.pause()
来更新该图。
import matplotlib.pyplot as plt
x = [1,1]
y = [1,2]
fig, (ax1,ax2) = plt.subplots(nrows=2, sharex=True, sharey=True)
line1, = ax1.plot(x)
line2, = ax2.plot(y)
ax1.set_xlim(-1,17)
ax1.set_ylim(-400,3000)
plt.ion()
for i in range(15):
x.append(x[-1]+x[-2])
line1.set_data(range(len(x)), x)
y.append(y[-1]+y[-2])
line2.set_data(range(len(y)), y)
plt.pause(0.1)
plt.ioff()
plt.show()
FuncAnimation
Matplotlib提供了一个动画子模块,它简化了创建动画的过程,也允许轻松地保存它们。和上面一样,使用FuncAnimation
会看起来像。
import matplotlib.pyplot as plt
import matplotlib.animation
x = [1,1]
y = [1,2]
fig, (ax1,ax2) = plt.subplots(nrows=2, sharex=True, sharey=True)
line1, = ax1.plot(x)
line2, = ax2.plot(y)
ax1.set_xlim(-1,18)
ax1.set_ylim(-400,3000)
def update(i):
x.append(x[-1]+x[-2])
line1.set_data(range(len(x)), x)
y.append(y[-1]+y[-2])
line2.set_data(range(len(y)), y)
ani = matplotlib.animation.FuncAnimation(fig, update, frames=14, repeat=False)
plt.show()
将一个频率变化的正弦波及其功率谱制作成动画的例子如下。
import matplotlib.pyplot as plt
import matplotlib.animation
import numpy as np
x = np.linspace(0,24*np.pi,512)
y = np.sin(x)
def fft(x):
fft = np.abs(np.fft.rfft(x))
return fft**2/(fft**2).max()
fig, (ax1,ax2) = plt.subplots(nrows=2)
line1, = ax1.plot(x,y)
line2, = ax2.plot(fft(y))
ax2.set_xlim(0,50)
ax2.set_ylim(0,1)
def update(i):
y = np.sin((i+1)/30.*x)
line1.set_data(x,y)
y2 = fft(y)
line2.set_data(range(len(y2)), y2)
ani = matplotlib.animation.FuncAnimation(fig, update, frames=60, repeat=True)
plt.show()