Abstract
The good bone conduction product can make user hearing clearly and using comfortably. The bone conduction product measuring instruments (such as B&K 4930 Artificial Mastoid) are expensive and can only simulate the functions of the specific human head part, such as the mastoid bone. Those are high precision equipments of the lab. General factories could not use them to test products at production line. As a result, bone conduction vibrator and sensor made of piezoelectric slice was used to develop an opening measurement environment of bone conduction. It can make the measurement of bone conduction product more convenient and inexpensive.
The rectangular bimorph was used as vibration source driver by IC (MAX 9788). An oval unimorph was used as a sensor and its signal was amplified by a charge amplifier. A low-vibration environment was used as a test platform for reducing vibration noise. The control system developed by LabVIEW software captures output of the charge amplifier and paints the curve of frequency response. The curve can be checked of products.
A standard bone conduction vibrator, a standard vibration sensor and piezoelectric bone conduction vibrator and sensor are cross-tested by using general electro-acoustic measurement system and the piezoelectric bone conduction measurement system. The curve of frequency response of piezoelectric vibrator is flatter than the standard vibrator. Additionally, it had large output amplitude at about 8000Hz. The frequency response of the piezoelectric sensor is 100mV higher than standard sensor. It can be used to check the product quality.
In the future, the artificial medium simulating the different parts of human head is placed between the vibrator and the sensor. It not only can make bone conduction products testing more verisimilar, but also can satisfy customer’s expectation.
第一章 序論 -------------------------------------------------------------------------------12
1.1 研究動機 -------------------------------------------------------------------------------12
1.2 研究目的 -------------------------------------------------------------------------------12
1.3 論文架構 -------------------------------------------------------------------------------13
第二章 文獻探討 -------------------------------------------------------------------------14
2.1 骨傳導聽覺原理 ----------------------------------------------------------------------14
2.2 骨傳導感測器的運用方式 ----------------------------------------------------------16
2.3電磁式骨導震動器原理 --------------------------------------------------------------18
2.4壓電材料簡介 --------------------------------------------------------------------------21
2.5 壓電片的聲頻動作 -------------------------------------------------------------------25
第三章 研究步驟與系統設計 -------------------------------------------------------26
3.1 研究步驟 -------------------------------------------------------------------------------26
3.2 系統設計 -------------------------------------------------------------------------------27
3.3 研究成果 -------------------------------------------------------------------------------35
第四章 系統測試 -------------------------------------------------------------------------38
4.1 系統測試方式 -------------------------------------------------------------------------38
4.2 測試結果 -------------------------------------------------------------------------------39
第五章 討論與結論 ---------------------------------------------------------------------44
5.1 討論 -------------------------------------------------------------------------------------44
5.2 結論 -------------------------------------------------------------------------------------45
Reference -------------------------------------------------------------------------------------46
附錄 --------------------------------------------------------------------------------------------48
[1]黃育?,骨導式助聽器之研製,私立中原大學醫學工程系碩士論文,中華民國九十三年七月。
[2]蕭雅文著,聽力學導論,五南圖書出版有限公司,中華民國八十六年二月。
[3]廣戶幾一郎著,林萬哲譯,實用耳鼻喉科學,嘉洲出版社,中華民國七十五年三月。
[4]徐茂銘編輯,耳鼻喉外科進階,財團法人杜詩綿教授學術基金會,中華民國八十八年七月。
[5]P. Tran, T. Letowski, and M. McBride, Bone Conduction Microphone: Head Sensitivity Mapping for Speech Intelligibility and Sound Quality, IEEE International Conference on Audio, Language and Image, page 107-111, July 2008,
[6]阮致維,P-Series PS2睡眠多項生理檢查儀介紹,元智大學老人福祉科技研究中心,中華民國九十四年四月三日。
[7]RADIOEAR corporation , Audio Transduction - B71 Engineering Data.
[8]王崧任, 橢圓激震器之設計與研究,國立交通大學機械工程系碩士論文, 中華民國九十四年七月。
[9]劉彥緯, 壓電式半主動摩擦阻尼器之研發,國立高雄第一科技大學營建工程系碩士論文,中華民國九十三年七月。
[10]蔡鎮竹,壓電煞車之專利介紹,機械月刊第二十八卷第四期2002年4月號。
[11]K. Adachi, Y. Kitamura, T. Iwatsubo, Integrated design of piezoelectric damping system for strcture “, Applied Acoustics Vol. 65, 293-310 (2004).
[12]Gaul and R. Nitschex, Friction control for vibration suppression, Mechanical System and Signal Processing, Vol. 14(2), 139-150 (2004).
[13]T. Ueno, J. Qiu, J. Tani, Device of magnetostrictive and piezoelectric materials for magnetic force control, Journal of Magnetism and Magnetic Materials 258-259, 490-492 (2003).
[14]Yung-Tien Liu, T. Higuchi, Rong-Fong Fung ,“A novel precision poisoning table utilizing impact force of Spring-mounted piezoelectric actuator-Part I experimental design and results, Precision Engineering Vol. 27, 14-21 (2003).
[15]李浚瑋,壓電蜂鳴器之機電特性與應用研究,國立聯合大學電機工程學系碩士論文,中華民國九十六年六月。
[16]施敏升,壓電致動器與感測器之分析與研究,私立中原大學機械工程系碩士論文,中華民國九十一年七月。
[17]賴俊安,兩極式壓電陶瓷驅動電路之設計研究,私立中原大學機械工程學系碩士論文,中華民國九十三年七月。
[18]謝岳成,壓電電荷常數d33之特性量測,國立交通大學電子工程學系暨電子研究所碩士論文,中華民國九十二年九月。
[19]I. L. Guy, E. M. Goldys, S. Muensit, Measurement of piezoelectric coefficients of nitride semiconductor films, IEEE Semiconducting and Insulating Materials Conference, page 55-58, July 2000.
[20]C. Suchicital, D. Payne, “Piezoelectric Measurements on Ceramic Multilayer Capacitors, IEEE Components, Packaging, and Manufacturing Technology Society, page 283-288, June 1985.
[21]吳朗,電子陶瓷壓電,全欣資訊圖書。
[22]J. Sun, B. Wu, G. Cheng, J. Wen, P. Zeng, Research on Circular Bimorph Piezoelectric Bone-conduction Hearing Device, IEEE Mechatronics and Automation, page 3359 – 3363, August 2009.
[23]顧玉沖,人頭機械阻抗模擬,電聲技術,Vol. 2,11-14(1994)。
[24]Maxim Integrated Products, “14Vp-p, Class G Ceramic Speaker Driver.