3.
Chou T C Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies.
Pharmacol Rev.
2006;
58
(3):621–681. doi: 10.1124/pr.58.3.10.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Bajorath J Integration of virtual and high-throughput screening.
Nat Rev Drug Discov.
2002;
1
(11):882–894. doi: 10.1038/nrd941.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Preuer K, Lewis R P I, Hochreiter S, et al DeepSynergy: predicting anti-cancer drug synergy with deep learning.
Bioinformatics.
2018;
34
(9):1538–1546. doi: 10.1093/bioinformatics/btx806.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
O’neil J, Benita Y, Feldman I, et al An unbiased oncology compound screen to identify novel combination strategies.
Mol Cancer Ther.
2016;
15
(6):1155–1162. doi: 10.1158/1535-7163.MCT-15-0843.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Zhang T, Zhang L, Payne P R O, et al Synergistic drug combination prediction by integrating multiomics data in deep learning models.
Methods Mol Biol.
2021;
2194
:223–238.
[
PubMed
]
[
Google Scholar
]
8.
陈希, 秦玉芳, 陈明, 等. 基于多输入神经网络的药物组合协同作用预测. 生物医学工程学杂志, 2020, 37(4): 676-682, 691.
9.
Sun Z, Huang S, Jiang P, et al DTF: deep tensor factorization for predicting anticancer drug synergy.
Bioinformatics.
2020;
36
(16):4483–4489. doi: 10.1093/bioinformatics/btaa287.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need// 31st Conference on Neural Information Processing Systems (NIPS 2017). Long Beach: NIPS, 2017: 6000-6010.
11.
Schwaller P, Laino T, Gaudin T, et al Molecular Transformer: a model for uncertainty-calibrated chemical reaction prediction.
ACS Cent Sci.
2019;
5
(9):1572–1583. doi: 10.1021/acscentsci.9b00576.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Wang S, Guo Y, Wang Y, et al. Smiles-Bert: Large scale unsupervised pre-training for molecular property prediction// BCB '19: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Niagara Falls: Association for Computing Machinery, 2019: 429-436.
13.
Tetko I V, Karpov P, Van Deursen R, et al State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis.
Nat Commun.
2020;
11
(1):5575. doi: 10.1038/s41467-020-19266-y.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
Honda S, Shi S, Ueda H R. Smiles transformer: pre-trained molecular fingerprint for low data drug discovery. arXiv preprint arXiv, 2019: 1911.04738.
15.
He J, You H, Sandstrm E, et al Molecular optimization by capturing chemist's intuition using deep neural networks.
J Cheminform.
2021;
13
(1):26. doi: 10.1186/s13321-021-00497-0.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Peters M E, Neumann M, Iyyer M, et al. Deep contextualized word representations// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans: Association for Computational Linguistics, 2018: 2227-2237.
17.
Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv, 2018: 1810.04805.
18.
Weininger D SMILES, a chemical language and information system.
1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci.
1988;
28
(1):31–36.
[
Google Scholar
]
19.
Liu Q, Xie L TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations.
PLoS Comput Biol.
2021;
17
(2):e1008653. doi: 10.1371/journal.pcbi.1008653.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Di Veroli G Y, Fornari C, Wang D, et al Combenefit: an interactive platform for the analysis and visualization of drug combinations.
Bioinformatics.
2016;
32
(18):2866–2868. doi: 10.1093/bioinformatics/btw230.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Holbeck S L, Camalier R, Crowell J A, et al The national cancer institute ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity.
Cancer Res.
2017;
77
(13):3564–3576. doi: 10.1158/0008-5472.CAN-17-0489.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
Landrum G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling. (2013) [2022-09-20]. http: //www.rdkit.org/RDKit_Overview.pdf.
24.
Pedregosa F, Varoquaux G, Gramfort A, et al Scikit-learn: Machine learning in Python.
J Mach Learn Res.
2011;
12
:2825–2830.
[
Google Scholar
]
25.
Hinselmann G, Rosenbaum L, Jahn A, et al jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints.
J Cheminform.
2011;
3
(1):3. doi: 10.1186/1758-2946-3-3.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
Cao D S, Xu Q S, Hu Q N, et al ChemoPy: freely available python package for computational biology and chemoinformatics.
Bioinformatics.
2013;
29
(8):1092–1094. doi: 10.1093/bioinformatics/btt105.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
Singh P K, Negi A, Gupta P K, et al Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations.
Arch Toxicol.
2016;
90
(8):1785–1802. doi: 10.1007/s00204-015-1587-5.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]