* `find_one()`:查询一条记录,不带任何参数返回第一条记录,带参数则按条件查找返回;
* `find()`:查询多条记录,不带参数返回所有记录,带参数按条件查找返回;
* `count()`:查看记录总数;
* `create_index()`:创建索引;
* `update_one()`:更新匹配到的第一条数据;
* `update()`:更新匹配到的所有数据;
* `remove()`:删除记录,不带参表示删除全部记录,带参则表示按条件删除;
* `delete_one()`:删除单条记录;
* `delete_many()`:删除多条记录;
#### 3.Pymongo 中的操作
* 查看数据库
from pymongo import MongoClient
connect = MongoClient(host='localhost', port=27017, username="root", password="123456")
connect = MongoClient('mongodb://localhost:27017/', username="root", password="123456")
print(connect.list_database_names())
* 获取数据库实例
test_db = connect['test']
* 获取collection实例
collection = test_db['students']
* 插入一行document, 查询一行document,取出一行document的值
from pymongo import MongoClient
from datetime import datetime
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
# 构建document
document = {"author": "Mike", "text": "My first blog post!", "tags": ["mongodb", "python", "pymongo"], "date": datetime.now()}
# 插入document
one_insert = collection.insert_one(document=document)
print(one_insert.inserted_id)
# 通过条件过滤出一条document
one_result = collection.find_one({"author": "Mike"})
# 解析document字段
print(one_result, type(one_result))
print(one_result['_id'])
print(one_result['author'])
注意:如果需要通过id查询一行document,需要将id包装为ObjectId类的实例对象
from bson.objectid import ObjectId
collection.find_one({'_id': ObjectId('5c2b18dedea5818bbd73b94c')})
* 插入多行documents, 查询多行document, 查看collections有多少行document
from pymongo import MongoClient
from datetime import datetime
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
documents = [{"author": "Mike","text": "Another post!","tags": ["bulk", "insert"], "date": datetime(2009, 11, 12, 11, 14)},
{"author": "Eliot", "title": "MongoDB is fun", "text": "and pretty easy too!", "date": datetime(2009, 11, 10, 10, 45)}]
collection.insert_many(documents=documents)
# 通过条件过滤出多条document
documents = collection.find({"author": "Mike"})
# 解析document字段
print(documents, type(documents))
print('*'*300)
for document in documents:
print(document)
print('*'*300)
result = collection.count_documents({'author': 'Mike'})
print(result)
* 范围比较查询
from pymongo import MongoClient
from datetime import datetime
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
# 通过条件过滤时间小于datetime(2019, 1,1,15,40,3) 的document
documents = collection.find({"date": {"$lt": datetime(2019, 1,1,15,40,3)}}).sort('date')
# 解析document字段
print(documents, type(documents))
print('*'*300)
for document in documents:
print(document)
* 创建索引
from pymongo import MongoClient
import pymongo
from datetime import datetime
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
# 创建字段索引
collection.create_index(keys=[("name", pymongo.DESCENDING)], unique=True)
# 查询索引
result = sorted(list(collection.index_information()))
print(result)
* document修改
from pymongo import MongoClient
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
result = collection.update({'name': 'robby'}, {'$set': {"name": "Petter"}})
print(result)
注意:还有update_many()方法
* document删除
from pymongo import MongoClient
connect = MongoClient(host='localhost', port=27017, username="root", password="123456",)
# 获取db
test_db = connect['test']
# 获取collection
collection = test_db['students']
result = collection.delete_one({'name': 'Petter'})
print(result.deleted_count)
注意:还有delete_many()方法
#### 4.MongoDB ODM 详解
* MongoDB ODM 与 Django ORM使用方法类似;
* MongoEngine是一个对象文档映射器,用Python编写,用于处理MongoDB;
* MongoEngine提供的抽象是基于类的,创建的所有模型都是类;
# 安装mongoengine
pip install mongoengine
* mongoengine使用的字段类型
BinaryField
BooleanField
ComplexDateTimeField
DateTimeField
DecimalField
DictField
DynamicField
EmailField
EmbeddedDocumentField
EmbeddedDocumentListField
FileField
FloatField
GenericEmbeddedDocumentField
GenericReferenceField
GenericLazyReferenceField
GeoPointField
ImageField
IntField
ListField:可以将自定义的文档类型嵌套
MapField
ObjectIdField
ReferenceField
LazyReferenceField
SequenceField
SortedListField
StringField
URLField
UUIDField
PointField
LineStringField
PolygonField
MultiPointField
MultiLineStringField
MultiPolygonField
#### 5.使用mongoengine创建数据库连接
from mongoengine import connect
conn = connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin')
print(conn)
`connect(db = None,alias ='default',** kwargs );`
* `db`:要使用的数据库的名称,以便与connect兼容;
* `host` :要连接的mongod实例的主机名;
* `port` :运行mongod实例的端口;
* `username`:用于进行身份验证的用户名;
* `password`:用于进行身份验证的密码;
* `authentication_source` :要进行身份验证的数据库;
**构建文档模型,插入数据**
from mongoengine import connect, \
Document, \
StringField,\
IntField, \
FloatField,\
ListField, \
EmbeddedDocumentField,\
DateTimeField, \
EmbeddedDocument
from datetime import datetime
# 嵌套文档
class Score(EmbeddedDocument):
name = StringField(max_length=50, required=True)
value = FloatField(required=True)
class Students(Document):
choice = (('F', 'female'),
('M', 'male'),)
name = StringField(max_length=100, required=True, unique=True)
age = IntField(required=True)
hobby = StringField(max_length=100, required=True, )
gender = StringField(choices=choice, required=True)
# 这里使用到了嵌套文档,这个列表中的每一个元素都是一个字典,因此使用嵌套类型的字段
score = ListField(EmbeddedDocumentField(Score))
time = DateTimeField(default=datetime.now())
if __name__ == '__main__':
connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin')
math_score = Score(name='math', value=94)
chinese_score = Score(name='chinese', value=100)
python_score = Score(name='python', value=99)
for i in range(10):
students = Students(name='robby{}'.format(i), age=int('{}'.format(i)), hobby='read', gender='M', score=[math_score, chinese_score, python_score])
students.save()
**查询数据**
from mongoengine import connect, \
Document, \
StringField,\
IntField, \
FloatField,\
ListField, \
EmbeddedDocumentField,\
DateTimeField, \
EmbeddedDocument
from datetime import datetime
# 嵌套文档
class Score(EmbeddedDocument):
name = StringField(max_length=50, required=True)
value = FloatField(required=True)
class Students(Document):
choice = (('F', 'female'),
('M', 'male'),)
name = StringField(max_length=100, required=True, unique=True)
age = IntField(required=True)
hobby = StringField(max_length=100, required=True, )
gender = StringField(choices=choice, required=True)
# 这里使用到了嵌套文档,这个列表中的每一个元素都是一个字典,因此使用嵌套类型的字段
score = ListField(EmbeddedDocumentField(Score))
time = DateTimeField(default=datetime.now())
if __name__ == '__main__':
connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin')
first_document = Students.objects.first()
all_document = Students.objects.all()
# 如果只有一条,也可以使用get
specific_document = Students.objects.filter(name='robby3')
print(first_document.name, first_document.age, first_document.time)
for document in all_document:
print(document.name)
for document in specific_document:
print(document.name, document.age)
**修改、更新、删除数据**
from mongoengine import connect, \
Document, \
StringField,\
IntField, \
FloatField,\
ListField, \
EmbeddedDocumentField,\
DateTimeField, \
EmbeddedDocument
from datetime import datetime
# 嵌套文档
class Score(EmbeddedDocument):
name = StringField(max_length=50, required=True)
value = FloatField(required=True)
class Students(Document):
choice = (('F', 'female'),
('M', 'male'),)
name = StringField(max_length=100, required=True, unique=True)
age = IntField(required=True)
hobby = StringField(max_length=100, required=True, )
gender = StringField(choices=choice, required=True)
# 这里使用到了嵌套文档,这个列表中的每一个元素都是一个字典,因此使用嵌套类型的字段
score = ListField(EmbeddedDocumentField(Score))
time = DateTimeField(default=datetime.now())
if __name__ == '__main__':
connect(db='test', host='localhost', port=27017, username='root', password='123456', authentication_source='admin')
specific_document = Students.objects.filter(name='robby3')
specific_document.update(set__age=100)
specific_document.update_one(set__age=100)
for document in specific_document:
document.name = 'ROBBY100'
document.save()
for document in specific_document:
document.delete()
* `all()`:返回所有文档;
* `all_fields()`:包括所有字段;
* `as_pymongo()`:返回的不是Document实例 而是pymongo值;
* `average()`:平均值超过指定字段的值;
* `batch_size()`:限制单个批次中返回的文档数量;
* `clone()`:创建当前查询集的副本;
* `comment()`:在查询中添加注释;
* `count()`:计算查询中的选定元素;
* `create()`:创建新对象,返回保存的对象实例;
* `delete()`:删除查询匹配的文档;
* `distinct()`:返回给定字段的不同值列表;
#### 嵌入式文档查询的方法
* `count()`:列表中嵌入文档的数量,列表的长度;
* `create()`:创建新的嵌入式文档并将其保存到数据库中;
* `delete()`:从数据库中删除嵌入的文档;
* `exclude(** kwargs )`:通过使用给定的关键字参数排除嵌入的文档来过滤列表;
* `first()`:返回列表中的第一个嵌入文档;
* `get()`:检索由给定关键字参数确定的嵌入文档;
* `save()`:保存祖先文档;
* `update()`:使用给定的替换值更新嵌入的文档;
参考:[https://www.9xkd.com/user/plan-view.html?id=2253255600](https://www.9xkd.com/user/plan-view.html?id=2253255600)
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/69908432/viewspace-2643763/,如需转载,请注明出处,否则将追究法律责任。
广播电视节目制作经营许可证(京) 字第1234号 中国互联网协会会员