The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer 昆明理工大学机电工程学院,昆明 650500, Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China φ = v 0 v v 0 × 100 % E * E = ( 1 φ ) 2

其中 φ 为孔隙率, v 0 v 分别为材料自然状态下的体积和绝对密实体积, E *为材料的等效弹性模量, E 为材料的弹性模量,由 表1 可知钛合金的弹性模量为110 GPa。

2. 结果

2.1. Von-Mises应力分析结果

16组种植体有限元模型的Von-Mises应力分析结果如 表4 所示。

表 4

有限元分析结果

Tab 4 The finite element analysis results

试验号 Von-Mises应力值 试验号 Von-Mises应力值
1 99.98 9 102.31
2 118.56 10 101.31
3 127.62 11 99.53
4 110.59 12 99.98
5 116.32 13 110.66
6 97.89 14 96.86
7 114.42 15 106.66
8 111.55 16 110.16

MPa

由于种植体Von-Mises应力分布情况类似,故此处仅以种植体所受Von-Mises应力最大的试验号3与应力最小的试验号14图像为例,从 图4 可知,在受到静态极限 An external file that holds a picture, illustration, etc. Object name is wcjs-41-06-647-i001.jpg 力时,种植体的颈部所受等效应力最大,且应力自上而下逐渐降低,与拓扑优化阶段的应力分布一致,且整体应力分布情况较为均匀。

An external file that holds a picture, illustration, etc. Object name is wcjs-41-06-647-g004.jpg
种植体等效应力分布图

Fig 4 Distribution map of implant Von-Mises stress

左:试验号3;右:试验号14。

2.2. 最佳参数组合的选择

分析种植体最大等效应力的均值主效应图( 图5 )可知,孔形、孔径、多孔层高度、孔分布4种因素对种植体最大等效应力的影响为:随着孔形的变小和孔分布的减少,等效应力均呈现下降的趋势;孔径从500 µm到600 µm再到700 µm,等效应力呈现先减小再增大的趋势;随着多孔层高度的增加,等效应力呈现上升后下降的趋势。

An external file that holds a picture, illustration, etc. Object name is wcjs-41-06-647-g005.jpg
均值主效应图

Fig 5 Average main effect diagram

由此可知,梯度多孔种植体的最佳参数组合是孔形为正方形、孔径为600 µm、多孔层高度为3 mm、孔分布为四分步。

2.3. 最佳参数组合种植体的性能评价

经计算得到该种植体在自然状态下的体积和绝对密实体积分别为139.08、113.9 mm 3 ,通过上述 公式1 2 得到该种植体弹性模量为73.78 GPa,由此可知,此结构可以有效缓解“应力屏蔽”现象。

3. 讨论

为减轻植入传统钛合金种植体后引起的“应力屏蔽”现象并延长种植体使用寿命,不少学者对此进行了深入研究。黄美慧等 [12] 通过改变种植体表面多孔厚度研究其对周围骨应力的影响,认为增加多孔厚度能增大骨应力,但可有效缓解“应力屏蔽”现象。徐伟 [13] 研究4种不同类型曲面结构和不同孔隙率下Gyroid结构的性能,认为孔隙率为30%时具有最佳渗透率及应力分布情况。虽然不少学者都研究出具有有效降低“应力屏蔽”现象的多孔结构,但并没有考虑分散种植体的应力集中情况。本研究设计的梯度多孔结构不但能减轻“应力屏蔽”现象,还能使应力分布更加均匀,即通过梯度多孔种植体孔径小刚度大的上部结构来承受更大的力,孔径大刚度小的下部结构来承受更小的力。该设计也能与周围骨组织的弹性模量相匹配,孔径小弹性模量大的上部与皮质骨相匹配,孔径大弹性模量小的下部与松质骨相匹配。

有研究表明,种植体的多孔结构能促进骨结合,其中孔形能促进细胞附着,孔径能促进细胞增殖分化。van Bael等 [14] 通过体外细胞实验研究得出,直角孔形更有利于细胞生长,钝角比锐角更容易造成细胞堆积和堵塞。Fukuda等 [15] 研究表明,500 µm孔径的多孔种植体具有最高的骨结合能力。Ran等 [16] 研究表明,600 µm孔径的多孔种植体更有利于骨内生长。Bobbert等 [17] 研究表明,孔径在80~500 µm之间骨组织细胞增殖分化效率较低,大于500 µm更有利于细胞迁移和均匀分布。林野 [18] 在临床研究中得出,种植体下端面3~5 mm的部位是获得初期稳定性的关键部位,与拓扑优化结果相对应,故多孔层高度设计成3、4、5 mm。由于多孔种植体目前仍然处于初步探索阶段,故孔形选择较常见的正方形、六边形和圆形,且根据van Bael等的观点结合本文结论,可认为直角不但更有利于细胞生长,还能承受更大的咀嚼力。结合参考文献15-17的观点,本研究将种植体的孔径设计成500、600、700 µm。且为了进一步增加孔隙率,同时使孔隙率的增加对等效应力的影响更加显著,故将孔分布设计成四分布、六分布和八分布。

将种植体设计成梯度多孔结构,并对梯度多孔结构的孔形、孔径、多孔层高度、孔分布四种因素进行参数化设计,通过对各个参数组合的种植体施加极限 An external file that holds a picture, illustration, etc. Object name is wcjs-41-06-647-i001.jpg 力进行仿真分析,得出种植体所受的Von-Mises应力。其中Von-Mises应力是基于剪切应变能的一种等效应力,其遵循当零件内某一点的等效应力超过材料许用临界值时材料发生屈服变形的准则,因此可以通过比较零件的最大等效应力值与材料的屈服强度,判断种植体系统是否会发生屈服破坏。由于试验号3中种植体所受的最大等效应力为127.62 MPa,未达到钛合金材料的屈服强度800 MPa,且未超过屈服强度的50%,因此可以判断短时间内种植体不会发生屈服破坏。

种植体的多孔结构能够增大与周围骨组织的接触面积,促进新骨向种植体内部生长,从而使种植体和骨界面形成机械自锁,增加种植体的长期稳定性和寿命 [19] [20] ;多孔种植体还能在孔内搭载药物,刺激新骨形成,加快骨结合 [21] [22] ;三维贯通的多孔结构不仅能增加细胞的附着面积,还能促使细胞液在种植体内流动,加快破骨区的愈合速度;梯度多孔通过改变孔隙结构,能实现弹性模量的变化,使种植体的弹性模量与口腔周围骨组织的弹性模量相匹配,以此减少“应力屏蔽”现象。

然而,有限元分析仍然具有局限性,无法模拟出真实的口腔环境和咀嚼的情况,因此需要做大量的临床试验来验证仿真分析的可靠性和真实性。并且种植体的弹性模量为等效弹性模量,后续应通过试验计算得出真实的弹性模量并检验仿真的准确性。本研究只单独分析了Ⅱ类骨的情况,对于其他骨类,最佳梯度多孔种植体的参数组合是否会有变化且具备显著性影响仍需大量的仿真分析。本试验只研究了四分布、六分布和八分布的分布形式,后续应增加三分布、五分布和七分布的对比试验,同时应增加三角形、五边形等孔形进行比较。此外,现阶段只研究了梯度多孔种植体的机械性能,后续应增加生物试验,得出对细胞增殖分化最有利的参数组合,并将该结构与实心种植体比较,判断其是否具有更好的前期稳定性。

Footnotes

利益冲突声明:作者声明本文无利益冲突。

References

1. Faverani LP, Barão VA, Ramalho-Ferreira G, et al. The influence of bone quality on the biomechanical behavior of full-arch implant-supported fixed prostheses[J] Mater Sci Eng C Mater Biol Appl. 2014; 37 :164–170. [ PubMed ] [ Google Scholar ]
2. Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone[J] Int J Biomater. 2011; 2011 :836587. [ PMC free article ] [ PubMed ] [ Google Scholar ]
3. 韩 雪莲, 刘 宗伟, 李 岩涛. 种植牙即刻负重的生物力学的三维有限元分析[J] 华西口腔医学杂志 2011; 29 (2):121–124. [ PubMed ] [ Google Scholar ] Han XL, Liu ZW, Li YT. Three dimensional finite element analysis of biomechanical distribution of dental implants with immediate loading[J] West China J Stomatol. 2011; 29 (2):121–124. [ PubMed ] [ Google Scholar ]
4. 姜 杨, 俞 经虎, 钱 善华. 基于离散元的种植体力学性能研究[J] 计算机仿真 2022; 39 (9):282–287. [ Google Scholar ] Jiang Y, Yu JH, Qian SH. Study on physical properties of implant based on discrete element[J] Comput Simul. 2022; 39 (9):282–287. [ Google Scholar ]
5. 张 帅, 吕 川, 李 进红, et al. 基台颈部缓冲层对种植体应力分布影响的三维有限元分析[J] 华西口腔医学杂志 2020; 38 (5):537–540. [ PMC free article ] [ PubMed ] [ Google Scholar ] Zhang S, Lü C, Li JH, et al. Three-dimensional finite element analysis of the influence of an abutment buffer layer on implant stress distribution[J] West China J Stomatol. 2020; 38 (5):537–540. [ PMC free article ] [ PubMed ] [ Google Scholar ]
6. Li X, Wang CT, Wang L, et al. Fabrication of bioactive Titanium with controlled porous structure and cell culture in vitro [J] Rare Met Mater Eng. 2010; 39 (10):1697–1701. [ Google Scholar ]
7. 金 柱坤, 李 潇, 赵 惠, et al. 基于螺旋CT对68例下颌骨的大小及形态学分析[J] 口腔医学研究 2013; 29 (3):248–251. [ Google Scholar ] Jin ZK, Li X, Zhao H, et al. Mandible size and morphology based on spiral CT in 68 patients[J] J Oral Sci Res. 2013; 29 (3):248–251. [ Google Scholar ]
8. Demenko V, Linetskiy I, Nesvit K, et al. Ultimate masticatory force as a criterion in implant selection[J] J Dent Res. 2011; 90 (10):1211–1215. [ PubMed ] [ Google Scholar ]
9. 郭 猛. 激光选区熔化制备多孔结构种植体及其性能分析[D] 秦皇岛: 燕山大学; 2021. [ Google Scholar ] Guo M. Preparation of porous structure implants by selective laser melting and analysis of their properties[D] Qinhuangdao: Yanshan University; 2021. [ Google Scholar ]
10. Ji SC, Gu Q, Xia B. Porosity dependence of mechanical properties of solid materials[J] J Mater Sci. 2006; 41 (6):1757–1768. [ Google Scholar ]
11. Maiti SK, Gibson LJ, Ashby MF. Deformation and energy absorption diagrams for cellular solids[J] Acta Metall. 1984; 32 (11):1963–1975. [ Google Scholar ]
12. 黄 美慧, 姜 闻博, 张 翕, et al. 牙种植体表面多孔层厚度对骨界面应力分布的影响[J] 口腔材料器械杂志 2016; 25 (2):61–65, 85. [ Google Scholar ] Huang MH, Jiang WB, Zhang X, et al. Effects of the surficial porous layer thickness of dental implants on the stress distribution in peri-implant bone[J] Chin J Dent Mater Devices. 2016; 25 (2):61–65, 85. [ Google Scholar ]
13. 徐 伟. 基于SLM梯度多孔钛口腔种植体结构设计及应用基础研究[D] 北京: 北京科技大学; 2021. [ Google Scholar ] Xu W. Structural design and application of gradient porous Ti-dental implant based on SLM[D] Beijing: University of Science and Technology Beijing; 2021. [ Google Scholar ]
14. van Bael S, Chai YC, Truscello S, et al. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds[J] Acta Biomater. 2012; 8 (7):2824–2834. [ PubMed ] [ Google Scholar ]
15. Fukuda A, Takemoto M, Saito T, et al. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting[J] Acta Biomater. 2011; 7 (5):2327–2336. [ PubMed ] [ Google Scholar ]
16. Ran QC, Yang WH, Hu Y, et al. Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes[J] J Mech Behav Biomed Mater. 2018; 84 :1–11. [ PubMed ] [ Google Scholar ]
17. Bobbert FSL, Zadpoor AA. Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone[J] J Mater Chem B. 2017; 5 (31):6175–6192. [ PubMed ] [ Google Scholar ]
18. 林 野. 当代牙种植体设计进步与临床意义[J] 华西口腔医学杂志 2017; 35 (1):18–28. [ PMC free article ] [ PubMed ] [ Google Scholar ] Lin Y. Current dental implant design and its clinical importance[J] West China J Stomatol. 2017; 35 (1):18–28. [ PMC free article ] [ PubMed ] [ Google Scholar ]
19. Bandyopadhyay A, Mitra I, Avila JD, et al. Porous metal implants: processing, properties, and challenges[J] Int J Extrem Manuf. 2023; 5 (3):032014. [ PMC free article ] [ PubMed ] [ Google Scholar ]
20. Zhang YN, Sun N, Zhu MR, et al. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis[J] Biomater Adv. 2022; 133 :112651. [ PubMed ] [ Google Scholar ]
21. Zhang ZB, Liu AB, Fan JD, et al. A drug-loaded composite coating to improve osteogenic and antibacterial properties of Zn-1Mg porous scaffolds as biodegradable bone implants[J] Bioact Mater. 2023; 27 :488–504. [ PMC free article ] [ PubMed ] [ Google Scholar ]
22. Watanabe R, Takahashi H, Matsugaki A, et al. Novel nano-hydroxyapatite coating of additively manufactured three-dimensional porous implants improves bone ingrowth and initial fixation[J] J Biomed Mater Res B Appl Biomater. 2023; 111 (2):453–462. [ PMC free article ] [ PubMed ] [ Google Scholar ]

Articles from West China Journal of Stomatology are provided here courtesy of Editorial Department of West China Journal of Stomatology