在现实场景中,由于光线、视角等问题会导致我们拍摄出来的照片比较阴暗,具体的图片如下图中的1、3、5列所示,然后这些阴暗的图片不仅会影响我们的观察,而且会极大的影响计算机视觉处理算法的效果,2、4、6列表示的是使用了低光照图像增强算法之后的效果。
本文主要针对低光照的图片展开论述,对经典的一些低光照图像增强算法进行了总结和初略的分析。
# coding=utf-8
import numpy as np
import cv2
def singleScaleRetinex(img, sigma):
'''单尺度Retinex函数'''
retinex = np.log10(img) - np.log10(cv2.GaussianBlur(img, (0, 0), sigma))
return retinex
def multiScaleRetinex(img, sigma_list):
'''多尺度Retinex函数'''
# 提前分配空间
retinex = np.zeros_like(img)
# 遍历所有的尺度
for sigma in sigma_list:
# 对计算的结果进行叠加
retinex += singleScaleRetinex(img, sigma)
# 计算多个尺度的平均值
retinex = retinex / len(sigma_list)
return retinex
def colorRestoration(img, alpha, beta):
'''颜色灰度函数'''
img_sum = np.sum(img, axis=2, keepdims=True)
color_restoration = beta * (np.log10(alpha * img) - np.log10(img_sum))
return color_restoration
def simplestColorBalance(img, low_clip, high_clip):
'''最简单的颜色均衡函数'''
total = img.shape[0] * img.shape[1]
for i in range(img.shape[2]):
unique, counts = np.unique(img[:, :, i], return_counts=True)
current = 0
for u, c in zip(unique, counts):
if float(current) / total < low_clip:
low_val = u
if float(current) / total < high_clip:
high_val = u
current += c
img[:, :, i] = np.maximum(np.minimum(img[:, :, i], high_val), low_val)
return img
def MSRCR(img, sigma_list, G, b, alpha, beta, low_clip, high_clip):
'''MSRCR函数'''
img = np.float64(img) + 1.0
# 对原图先做多尺度的Retinex
img_retinex = multiScaleRetinex(img, sigma_list)
# 对原图做颜色恢复
img_color = colorRestoration(img, alpha, beta)
# 进行图像融合
img_msrcr = G * (img_retinex * img_color + b)
for i in range(img_msrcr.shape[2]):
img_msrcr[:, :, i] = (img_msrcr[:, :, i] - np.min(img_msrcr[:, :, i])) / \
(np.max(img_msrcr[:, :, i]) - np.min(img_msrcr[:, :, i])) * \
# 将图像调整到[0,255]范围内
img_msrcr = np.uint8(np.minimum(np.maximum(img_msrcr, 0), 255))
# 做简单的颜色均衡
img_msrcr = simplestColorBalance(img_msrcr, low_clip, high_clip)
return img_msrcr
def automatedMSRCR(img, sigma_list):
'''automatedMSRCR函数'''
img = np.float64(img) + 1.0
img_retinex = multiScaleRetinex(img, sigma_list)
for i in range(img_retinex.shape[2]):
unique, count = np.unique(np.int32(img_retinex[:, :, i] * 100), return_counts=True)
for u, c in zip(unique, count):
if u == 0:
zero_count = c
break
low_val = unique[0] / 100.0
high_val = unique[-1] / 100.0
for u, c in zip(unique, count):
if u < 0 and c < zero_count * 0.1:
low_val = u / 100.0
if u > 0 and c < zero_count * 0.1:
high_val = u / 100.0
break
img_retinex[:, :, i] = np.maximum(np.minimum(img_retinex[:, :, i], high_val), low_val)
img_retinex[:, :, i] = (img_retinex[:, :, i] - np.min(img_retinex[:, :, i])) / \
(np.max(img_retinex[:, :, i]) - np.min(img_retinex[:, :, i])) \
* 255
img_retinex = np.uint8(img_retinex)
return img_retinex
def MSRCP(img, sigma_list, low_clip, high_clip):
'''MSRCP函数'''
img = np.float64(img) + 1.0
intensity = np.sum(img, axis=2) / img.shape[2]
retinex = multiScaleRetinex(intensity, sigma_list)
intensity = np.expand_dims(intensity, 2)
retinex = np.expand_dims(retinex, 2)
intensity1 = simplestColorBalance(retinex, low_clip, high_clip)
intensity1 = (intensity1 - np.min(intensity1)) / \
(np.max(intensity1) - np.min(intensity1)) * \
255.0 + 1.0
img_msrcp = np.zeros_like(img)
for y in range(img_msrcp.shape[0]):
for x in range(img_msrcp.shape[1]):
B = np.max(img[y, x])
A = np.minimum(256.0 / B, intensity1[y, x, 0] / intensity[y, x, 0])
img_msrcp[y, x, 0] = A * img[y, x, 0]
img_msrcp[y, x, 1] = A * img[y, x, 1]
img_msrcp[y, x, 2] = A * img[y, x, 2]
img_msrcp = np.uint8(img_msrcp - 1.0)
return img_msrcp
2.3 Retinex算法效果展示与分析
上图展示了Retinex算法在一些真实数据上面的效果。上面主要展示了该算法在一些文档上面的增强效果,第一行的5张图片表示的是原始的输入图片,第二行的5张图片表示的是使用Retinex算法增强之后的效果。
通过观察我们可以发现,该算法不仅能够增强图像的亮度信息,同时可以去除图片中的部分阴影信息;但是该算法的运算速度比较慢,不能应用到一些实时的场景中。
3、LIME算法