相关文章推荐
怕老婆的卤蛋  ·  C# 基本语法 | ·  2 月前    · 
没有腹肌的开水瓶  ·  Exception in thread ...·  1 月前    · 
千年单身的蚂蚁  ·  Exception in thread ...·  1 月前    · 
长情的山羊  ·  9个小技巧让你的 if ...·  1 年前    · 
  • 默认构造函数,创建一个空的 std::thread 执行对象。
  • 初始化构造函数,创建一个 std::thread 对象,该 std::thread 对象可被 joinable ,新产生的线程会调用 fn 函数,该函数的参数由 args 给出。
  • 拷贝构造函数(被禁用),意味着 std::thread 对象不可拷贝构造。
  • Move 构造函数,move 构造函数(move 语义是 C++11 新出现的概念,详见附录),调用成功之后 x 不代表任何 std::thread 执行对象。
  • 注意:可被 joinable std::thread 对象必须在他们销毁之前被主线程 join 或者将其设置为 detached .

    std::thread 各种构造函数例子如下:

    #include <iostream>
    #include <utility>
    #include <thread>
    #include <chrono>
    #include <functional>
    #include <atomic>
    void f1(int n)
        for (int i = 0; i < 5; ++i) {
            std::cout << "Thread " << n << " executing\n";
            std::this_thread::sleep_for(std::chrono::milliseconds(10));
    void f2(int& n)
        for (int i = 0; i < 5; ++i) {
            std::cout << "Thread 2 executing\n";
            std::this_thread::sleep_for(std::chrono::milliseconds(10));
    int main()
        int n = 0;
        std::thread t1; // t1 is not a thread
        std::thread t2(f1, n + 1); // pass by value
        std::thread t3(f2, std::ref(n)); // pass by reference
        std::thread t4(std::move(t3)); // t4 is now running f2(). t3 is no longer a thread
        t2.join();
        t4.join();
        std::cout << "Final value of n is " << n << '\n';
    

    std::thread 赋值操作 Move 赋值操作 thread& operator=(thread&& rhs) noexcept; 拷贝赋值操作 [deleted] thread& operator=(const thread&) = delete;
  • Move 赋值操作(1),如果当前对象不可 joinable,需要传递一个右值引用(rhs)给 move 赋值操作;如果当前对象可被 joinable,则会调用 terminate() 报错。
  • 拷贝赋值操作(2),被禁用,因此 std::thread 对象不可拷贝赋值。
  • 请看下面的例子:

    #include <stdio.h>
    #include <stdlib.h>
    #include <chrono>    // std::chrono::seconds
    #include <iostream>  // std::cout
    #include <thread>    // std::thread, std::this_thread::sleep_for
    void thread_task(int n) {
        std::this_thread::sleep_for(std::chrono::seconds(n));
        std::cout << "hello thread "
            << std::this_thread::get_id()
            << " paused " << n << " seconds" << std::endl;
    int main(int argc, const char *argv[])
        std::thread threads[5];
        std::cout << "Spawning 5 threads...\n";
        for (int i = 0; i < 5; i++) {
            threads[i] = std::thread(thread_task, i + 1);
        std::cout << "Done spawning threads! Now wait for them to join\n";
        for (auto& t: threads) {
            t.join();
        std::cout << "All threads joined.\n";
        return EXIT_SUCCESS;
    

    其他成员函数

    get_id: 获取线程 ID,返回一个类型为 std::thread::id 的对象。请看下面例子:

    #include <iostream>
    #include <thread>
    #include <chrono>
    void foo()
      std::this_thread::sleep_for(std::chrono::seconds(1));
    int main()
      std::thread t1(foo);
      std::thread::id t1_id = t1.get_id();
      std::thread t2(foo);
      std::thread::id t2_id = t2.get_id();
      std::cout << "t1's id: " << t1_id << '\n';
      std::cout << "t2's id: " << t2_id << '\n';
      t1.join();
      t2.join();
    

    joinable: 检查线程是否可被 join。检查当前的线程对象是否表示了一个活动的执行线程,由默认构造函数创建的线程是不能被 join 的。另外,如果某个线程 已经执行完任务,但是没有被 join 的话,该线程依然会被认为是一个活动的执行线程,因此也是可以被 join 的。

    #include <iostream>
    #include <thread>
    #include <chrono>
    void foo()
      std::this_thread::sleep_for(std::chrono::seconds(1));
    int main()
      std::thread t;
      std::cout << "before starting, joinable: " << t.joinable() << '\n';
      t = std::thread(foo);
      std::cout << "after starting, joinable: " << t.joinable() << '\n';
      t.join();
    join: Join 线程,调用该函数会阻塞当前线程,直到由 *this 所标示的线程执行完毕 join 才返回。
    #include <iostream>
    #include <thread>
    #include <chrono>
    void foo()
      // simulate expensive operation
      std::this_thread::sleep_for(std::chrono::seconds(1));
    void bar()
      // simulate expensive operation
      std::this_thread::sleep_for(std::chrono::seconds(1));
    int main()
      std::cout << "starting first helper...\n";
      std::thread helper1(foo);
      std::cout << "starting second helper...\n";
      std::thread helper2(bar);
      std::cout << "waiting for helpers to finish..." << std::endl;
      helper1.join();
      helper2.join();
      std::cout << "done!\n";
    

    detach: Detach 线程。 将当前线程对象所代表的执行实例与该线程对象分离,使得线程的执行可以单独进行。一旦线程执行完毕,它所分配的资源将会被释放。

    调用 detach 函数之后:

  • *this 不再代表任何的线程执行实例。
  • joinable() == false
  • get_id() == std::thread::id()
  • 另外,如果出错或者 joinable() == false,则会抛出 std::system_error。

    #include <iostream>
    #include <chrono>
    #include <thread>
    void independentThread() 
        std::cout << "Starting concurrent thread.\n";
        std::this_thread::sleep_for(std::chrono::seconds(2));
        std::cout << "Exiting concurrent thread.\n";
    void threadCaller() 
        std::cout << "Starting thread caller.\n";
        std::thread t(independentThread);
        t.detach();
        std::this_thread::sleep_for(std::chrono::seconds(1));
        std::cout << "Exiting thread caller.\n";
    int main() 
        threadCaller();
        std::this_thread::sleep_for(std::chrono::seconds(5));
    swap: Swap 线程,交换两个线程对象所代表的底层句柄(underlying handles)。
    #include <iostream>
    #include <thread>
    #include <chrono>
    void foo()
      std::this_thread::sleep_for(std::chrono::seconds(1));
    void bar()
      std::this_thread::sleep_for(std::chrono::seconds(1));
    int main()
      std::thread t1(foo);
      std::thread t2(bar);
      std::cout << "thread 1 id: " << t1.get_id() << std::endl;
      std::cout << "thread 2 id: " << t2.get_id() << std::endl;
      std::swap(t1, t2);
      std::cout << "after std::swap(t1, t2):" << std::endl;
      std::cout << "thread 1 id: " << t1.get_id() << std::endl;
      std::cout << "thread 2 id: " << t2.get_id() << std::endl;
      t1.swap(t2);
      std::cout << "after t1.swap(t2):" << std::endl;
      std::cout << "thread 1 id: " << t1.get_id() << std::endl;
      std::cout << "thread 2 id: " << t2.get_id() << std::endl;
      t1.join();
      t2.join();
    

    执行结果如下:

    thread 1 id: 1892
    thread 2 id: 2584
    after std::swap(t1, t2):
    thread 1 id: 2584
    thread 2 id: 1892
    after t1.swap(t2):
    thread 1 id: 1892
    thread 2 id: 2584

    native_handle: 返回 native handle(由于 std::thread 的实现和操作系统相关,因此该函数返回与 std::thread 具体实现相关的线程句柄,例如在符合 Posix 标准的平台下(如 Unix/Linux)是 Pthread 库)。

    #include <thread>
    #include <iostream>
    #include <chrono>
    #include <cstring>
    #include <pthread.h>
    std::mutex iomutex;
    void f(int num)
      std::this_thread::sleep_for(std::chrono::seconds(1));
     sched_param sch;
     int policy; 
     pthread_getschedparam(pthread_self(), &policy, &sch);
     std::lock_guard<std::mutex> lk(iomutex);
     std::cout << "Thread " << num << " is executing at priority "
               << sch.sched_priority << '\n';
    int main()
      std::thread t1(f, 1), t2(f, 2);
      sched_param sch;
      int policy; 
      pthread_getschedparam(t1.native_handle(), &policy, &sch);
      sch.sched_priority = 20;
      if(pthread_setschedparam(t1.native_handle(), SCHED_FIFO, &sch)) {
          std::cout << "Failed to setschedparam: " << std::strerror(errno) << '\n';
      t1.join();
      t2.join();
    

    执行结果如下:

    Thread 2 is executing at priority 0 Thread 1 is executing at priority 20

    hardware_concurrency [static]: 检测硬件并发特性,返回当前平台的线程实现所支持的线程并发数目,但返回值仅仅只作为系统提示(hint)。

    #include <iostream>
    #include <thread>
    int main() {
      unsigned int n = std::thread::hardware_concurrency();
      std::cout << n << " concurrent threads are supported.\n";
    

    std::this_thread 命名空间中相关辅助函数介绍

    get_id: 获取线程 ID。

    #include <iostream>
    #include <thread>
    #include <chrono>
    #include <mutex>
    std::mutex g_display_mutex;
    void foo()
      std::thread::id this_id = std::this_thread::get_id();
      g_display_mutex.lock();
      std::cout << "thread " << this_id << " sleeping...\n";
      g_display_mutex.unlock();
      std::this_thread::sleep_for(std::chrono::seconds(1));
    int main()
      std::thread t1(foo);
      std::thread t2(foo);
      t1.join();
      t2.join();
    

    yield: 当前线程放弃执行,操作系统调度另一线程继续执行。

    #include <iostream>
    #include <chrono>
    #include <thread>
    // "busy sleep" while suggesting that other threads run 
    // for a small amount of time
    void little_sleep(std::chrono::microseconds us)
      auto start = std::chrono::high_resolution_clock::now();
      auto end = start + us;
          std::this_thread::yield();
      } while (std::chrono::high_resolution_clock::now() < end);
    int main()
      auto start = std::chrono::high_resolution_clock::now();
      little_sleep(std::chrono::microseconds(100));
      auto elapsed = std::chrono::high_resolution_clock::now() - start;
      std::cout << "waited for "
                << std::chrono::duration_cast<std::chrono::microseconds>(elapsed).count()
                << " microseconds\n";
    

    sleep_until: 线程休眠至某个指定的时刻(time point),该线程才被重新唤醒。

    template< class Clock, class Duration >
    void sleep_until( const std::chrono::time_point<Clock,Duration>& sleep_time );

    sleep_for: 线程休眠某个指定的时间片(time span),该线程才被重新唤醒,不过由于线程调度等原因,实际休眠时间可能比 sleep_duration 所表示的时间片更长。

    #include <iostream>
    #include <chrono>
    #include <thread>
    int main()
      std::cout << "Hello waiter" << std::endl;
      std::chrono::milliseconds dura( 2000 );
      std::this_thread::sleep_for( dura );
      std::cout << "Waited 2000 ms\n";
    

    执行结果如下:

    Hello waiter
    Waited 2000 ms

    来源:https://github.com/forhappy/Cplusplus-Concurrency-In-Practice/blob/master/zh/chapter3-Thread/Introduction-to-Thread.md