The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The
https://
ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,
the contents by NLM or the National Institutes of Health.
Learn more about our disclaimer.
Front Synaptic Neurosci.
2022; 14: 830583.
Correlative Live-Cell and Super-Resolution Imaging to Link Presynaptic Molecular Organisation With Function
,
,
and
J. Struct. Biol.
203–210. 10.1016/j.jsb.2009.10.014
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Butkevich A. N., Weber M., Cereceda Delgado A. R., Ostersehlt L. M., D’Este E., Hell S. W. (2021).
Photoactivatable fluorescent dyes with hydrophilic caging groups and their use in multicolor nanoscopy.
J. Am. Chem. Soc.
18388–18393. 10.1021/jacs.1c09999
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Choi J.-H., Yu N.-K., Baek G.-C., Bakes J., Seo D., Nam H. J., et al. (2014).
Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons.
Mol. Brain
7
:
17
. 10.1186/1756-6606-7-17
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Compans B., Camus C., Kallergi E., Sposini S., Martineau M., Butler C., et al. (2021).
NMDAR-dependent long-term depression is associated with increased short term plasticity through autophagy mediated loss of PSD-95.
Nat. Commun.
12
:
2849
. 10.1038/s41467-021-23133-9
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Crawford D. C., Mennerick S. (2012).
Presynaptically silent synapses: dormancy and awakening of presynaptic vesicle release.
Neuroscientist
216–223. 10.1177/1073858411418525
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Dana H., Mohar B., Sun Y., Narayan S., Gordus A., Hasseman J. P., et al. (2016).
Sensitive red protein calcium indicators for imaging neural activity.
eLife
5
:
e12727
. 10.7554/eLife.12727
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Dani A., Huang B., Bergan J., Dulac C., Zhuang X. (2010).
Superresolution imaging of chemical synapses in the brain.
Neuron
843–856. 10.1016/j.neuron.2010.11.021
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Davydova D., Marini C., King C., Klueva J., Bischof F., Romorini S., et al. (2014).
Bassoon specifically controls presynaptic P/Q-type Ca2+ channels via RIM-binding protein.
Neuron
181–194. 10.1016/j.neuron.2014.02.012
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
del Castillo J., Katz B. (1954).
Quantal components of the end-plate potential.
J. Physiol.
560–573. 10.1113/jphysiol.1954.sp005129
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Dodge F. A., Rahamimoff R. (1967).
Co-operative action of calcium ions in transmitter release at the neuromuscular junction.
J. Physiol.
419–432. 10.1113/jphysiol.1967.sp008367
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Dong W., Radulovic T., Goral R. O., Thomas C., Suarez Montesinos M., Guerrero-Given D., et al. (2018).
CAST/ELKS proteins control voltage-gated Ca 2+ channel density and synaptic release probability at a mammalian central synapse.
Cell Rep.
284.e6–293.e6. 10.1016/j.celrep.2018.06.024
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Dreosti E., Odermatt B., Dorostkar M. M., Lagnado L. (2009).
A genetically encoded reporter of synaptic activity in vivo.
Nat. Methods
883–889. 10.1038/nmeth.1399
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Eggermann E., Bucurenciu I., Goswami S. P., Jonas P. (2012).
Nanodomain coupling between Ca 2+ channels and sensors of exocytosis at fast mammalian synapses.
Nat. Rev. Neurosci.
7–21. 10.1038/nrn3125
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Éltes T., Kirizs T., Nusser Z., Holderith N. (2017).
Target cell type-dependent differences in Ca2+ channel function underlie distinct release probabilities at hippocampal glutamatergic terminals.
J. Neurosci.
1910–1924. 10.1523/JNEUROSCI.2024-16.2017
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Ermolyuk Y. S., Alder F. G., Henneberger C., Rusakov D. A., Kullmann D. M., Volynski K. E. (2012).
Independent regulation of basal neurotransmitter release efficacy by variable Ca2+ influx and bouton size at small central synapses.
PLoS Biol.
10
:
e1001396
. 10.1371/journal.pbio.1001396
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Früh S. M., Matti U., Spycher P. R., Rubini M., Lickert S., Schlichthaerle T., et al. (2021).
Site-specifically-labeled antibodies for super-resolution microscopy reveal
In Situ
linkage errors.
ACS Nano
12161–12170. 10.1021/acsnano.1c03677
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Fukata Y., Dimitrov A., Boncompain G., Vielemeyer O., Perez F., Fukata M. (2013).
Local palmitoylation cycles define activity-regulated postsynaptic subdomains.
J. Cell Biol.
145–161. 10.1083/jcb.201302071
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Gasparini S., Kasyanov A. M., Pietrobon D., Voronin L. L., Cherubini E. (2001).
Presynaptic R-Type calcium channels contribute to fast excitatory synaptic transmission in the rat hippocampus.
J. Neurosci.
8715–8721. 10.1523/JNEUROSCI.21-22-08715.2001
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Glebov O. O., Jackson R. E., Winterflood C. M., Owen D. M., Barker E. A., Doherty P., et al. (2017).
Nanoscale structural plasticity of the active zone matrix modulates presynaptic function.
Cell Rep.
2715–2728. 10.1016/j.celrep.2017.02.064
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Granseth B., Odermatt B., Royle S. J. J., Lagnado L. (2006).
Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses.
Neuron
773–786. 10.1016/j.neuron.2006.08.029
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Gwosch K. C., Pape J. K., Balzarotti F., Hoess P., Ellenberg J., Ries J., et al. (2020).
MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells.
Nat. Methods
217–224. 10.1038/s41592-019-0688-0
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Haas K. T., Compans B., Letellier M., Bartol T. M., Grillo-Bosch D., Sejnowski T. J., et al. (2018).
Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency.
eLife
7
:
e31755
. 10.7554/eLife.31755
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Harris K. M., Weinberg R. J. (2012).
Ultrastructure of synapses in the mammalian brain.
Cold Spring Harb. Perspect. Biol.
4
:
a005587
. 10.1101/cshperspect.a005587
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Heck J., Parutto P., Ciuraszkiewicz A., Bikbaev A., Freund R., Mitlöhner J., et al. (2019).
Transient confinement of CaV2.1 Ca2+-Channel splice variants shapes synaptic short-term plasticity.
Neuron
66.e12–79.e12. 10.1016/j.neuron.2019.04.030
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Heine M., Holcman D. (2020).
Asymmetry between pre- and postsynaptic transient nanodomains shapes neuronal communication.
Trends Neurosci.
182–196. 10.1016/j.tins.2020.01.005
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Holderith N., Heredi J., Kis V., Nusser Z. (2020).
A high-resolution method for quantitative molecular analysis of functionally characterized individual synapses.
Cell Rep.
32
:
107968
. 10.1016/j.celrep.2020.107968
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Holderith N., Lorincz A., Katona G., Rózsa B., Kulik A., Watanabe M., et al. (2012).
Release probability of hippocampal glutamatergic terminals scales with the size of the active zone.
Nat. Neurosci.
988–997. 10.1038/nn.3137
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Hoppa M. B., Gouzer G., Armbruster M., Ryan T. A. (2014).
Control and plasticity of the presynaptic action potential waveform at small CNS nerve terminals.
Neuron
778–789. 10.1016/j.neuron.2014.09.038
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Hruska M., Henderson N., Le Marchand S. J., Jafri H., Dalva M. B. (2018).
Synaptic nanomodules underlie the organization and plasticity of spine synapses.
Nat. Neurosci.
671–682. 10.1038/s41593-018-0138-9
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Jackson R. E., Burrone J. (2016).
Visualizing presynaptic calcium dynamics and vesicle fusion with a single genetically encoded reporter at individual synapses.
Front. Synaptic Neurosci.
8
:
21
. 10.3389/fnsyn.2016.00021
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Jungmann R., Avendaño M. S., Woehrstein J. B., Dai M., Shih W. M., Yin P. (2014).
Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT.
Nat. Methods
313–318. 10.1038/nmeth.2835
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Kaeser P. S., Deng L., Wang Y., Dulubova I., Liu X., Rizo J., et al. (2011).
RIM proteins tether Ca2+ Channels to presynaptic active zones via a direct PDZ-Domain interaction.
282–295. 10.1016/j.cell.2010.12.029
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Levet F., Hosy E., Kechkar A., Butler C., Beghin A., Choquet D., et al. (2015).
SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data.
Nat. Methods
1065–1071. 10.1038/nmeth.3579
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Levet F., Julien G., Galland R., Butler C., Beghin A., Chazeau A., et al. (2019).
A tessellation-based colocalization analysis approach for single-molecule localization microscopy.
Nat. Commun.
10
:
2379
. 10.1038/s41467-019-10007-4
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Li Y., Tsien R. W. (2012).
pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity.
Nat. Neurosci.
1047–1053. 10.1038/nn.3126
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Lipscombe D., Allen S. E., Toro C. P. (2013).
Control of neuronal voltage-gated calcium ion channels from RNA to protein.
Trends Neurosci.
598–609. 10.1016/j.tins.2013.06.008
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Liu A., Huang X., He W., Xue F., Yang Y., Liu J., et al. (2021).
pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps.
Nat. Commun.
12
:
1413
. 10.1038/s41467-021-21666-7
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Luebke I., Dunlap K., Turner T. J. (1993).
Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus.
Neuron
895–902. 10.1016/0896-6273(93)90119-c [
PubMed
] [
CrossRef
]
[
Google Scholar
]
MacGillavry H. D., Song Y., Raghavachari S., Blanpied T. A. (2013).
Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic ampa receptors.
Neuron
615–622. 10.1016/j.neuron.2013.03.009
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Marra V., Burden J. J., Thorpe J. R., Smith I. T., Smith S. L., Häusser M., et al. (2012).
A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses.
Neuron
579–589. 10.1016/j.neuron.2012.08.042
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Marvin J. S., Borghuis B. G., Tian L., Cichon J., Harnett M. T., Akerboom J., et al. (2013).
An optimized fluorescent probe for visualizing glutamate neurotransmission.
Nat. Methods
162–170. 10.1038/nmeth.2333
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Marvin J. S., Scholl B., Wilson D. E., Podgorski K., Kazemipour A., Müller J. A., et al. (2018).
Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR.
Nat. Methods
936–939. 10.1038/s41592-018-0171-3
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Marvin J. S., Shimoda Y., Magloire V., Leite M., Kawashima T., Jensen T. P., et al. (2019).
A genetically encoded fluorescent sensor for in vivo imaging of GABA.
Nat. Methods
763–770. 10.1038/s41592-019-0471-2
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Maschi D., Klyachko V. A. (2017).
Spatiotemporal regulation of synaptic vesicle fusion sites in central synapses.
Neuron
65.e3–73.e3. 10.1016/j.neuron.2017.03.006
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Miesenböck G., de Angelis D. A., Rothman J. E. (1998).
Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins.
Nature
192–195. 10.1038/28190
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Miki T., Kaufmann W. A., Malagon G., Gomez L., Tabuchi K., Watanabe M., et al. (2017).
Numbers of presynaptic Ca2+ channel clusters match those of functionally defined vesicular docking sites in single central synapses.
Proc. Natl. Acad. Sci. U.S.A.
E5246–E5255. 10.1073/pnas.1704470114
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Murthy V. N., Schikorski T., Stevens C. F., Zhu Y. (2001).
Inactivity produces increases in neurotransmitter release and synapse size.
Neuron
673–682. 10.1016/S0896-6273(01)00500-1 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
Murthy V. N., Sejnowski T. J., Stevens C. F. (1997).
Heterogeneous release properties of visualized individual hippocampal synapses.
Neuron
599–612. 10.1016/S0896-6273(00)80301-3 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
Nair D., Hosy E., Petersen J. D., Constals A., Giannone G., Choquet D., et al. (2013).
Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95.
J. Neurosci.
13204–13224. 10.1523/JNEUROSCI.2381-12.2013
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Nakai J., Ohkura M., Imoto K. (2001).
A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein.
Nat. Biotechnol.
137–141. 10.1038/84397
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Novak P., Gorelik J., Vivekananda U., Shevchuk A. I., Ermolyuk Y. S., Bailey R. J., et al. (2013).
Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels.
Neuron
1067–1077. 10.1016/j.neuron.2013.07.012
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Parajuli L. K., Nakajima C., Kulik A., Matsui K., Schneider T., Shigemoto R., et al. (2012).
Quantitative regional and ultra structural localization of the Ca v2.3 subunit of R-type calcium channel in mouse brain.
J. Neurosci.
13555–13567. 10.1523/JNEUROSCI.1142-12.2012
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Platonova E., Winterflood C. M., Ewers H. (2015).
A simple method for GFP- and RFP-based dual color single-molecule localization microscopy.
ACS Chem. Biol.
1411–1416. 10.1021/acschembio.5b00046
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Quade B., Camacho M., Zhao X., Orlando M., Trimbuch T., Xu J., et al. (2019).
Membrane bridging by Munc13-1 is crucial for neurotransmitter release.
eLife
8
:
e42806
. 10.7554/eLife.42806
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Rebola N., Reva M., Kirizs T., Szoboszlay M., Lőrincz A., Moneron G., et al. (2019).
Distinct nanoscale calcium channel and synaptic vesicle topographies contribute to the diversity of synaptic function.
Neuron
693.e9–710.e9. 10.1016/j.neuron.2019.08.014
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Reid C. A., Clements J. D., Bekkers J. M. (1997).
Nonuniform distribution of Ca 2 channel subtypes on presynaptic terminals of excitatory synapses in hippocampal cultures.
J. Neurosci.
2738–2745. 10.1523/JNEUROSCI.17-08-02738.1997
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Rose T., Schoenenberger P., Jezek K., Oertner T. G. (2013).
Developmental refinement of vesicle cycling at schaffer collateral synapses.
Neuron
1109–1121. 10.1016/j.neuron.2013.01.021
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Sabater V. G., Rigby M., Burrone J. (2021).
Voltage-gated potassium channels ensure action potential shape fidelity in distal axons.
J. Neurosci.
5372–5385. 10.1523/JNEUROSCI.2765-20.2021
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Sakamoto H., Ariyoshi T., Kimpara N., Sugao K., Taiko I., Takikawa K., et al. (2018).
Synaptic weight set by Munc13-1 supramolecular assemblies.
Nat. Neurosci.
41–55. 10.1038/s41593-017-0041-9
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Sankaranarayanan S., de Angelis D., Rothman J. E., Ryan T. A. (2000).
The use of pHluorins for optical measurements of presynaptic activity.
Biophys. J.
2199–2208. 10.1016/S0006-3495(00)76468-X
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Scheuber A., Miles R., Poncer J. C. (2004).
Presynaptic Cav2.1 and Cav2.2 differentially influence release dynamics at hippocampal excitatory synapses.
J. Neurosci.
10402–10409. 10.1523/JNEUROSCI.1664-04.2004
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Schikorski T., Stevens C. F. (1997).
Quantitative ultrastructural analysis of hippocampal excitatory synapses.
J. Neurosci.
5858–5867. 10.1523/JNEUROSCI.17-15-05858.1997
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Schneider R., Hosy E., Kohl J., Klueva J., Choquet D., Thomas U., et al. (2015).
Mobility of calcium channels in the presynaptic membrane.
Neuron
672–679. 10.1016/j.neuron.2015.03.050
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Sigal Y. M., Zhou R., Zhuang X. (2018).
Visualizing and discovering cellular structures with super-resolution microscopy.
Science
880–887. 10.1126/science.aau1044
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Südhof T. C. (2012).
The presynaptic active zone.
Neuron
11–25. 10.1016/j.neuron.2012.06.012
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Tang A. H., Chen H., Li T. P., Metzbower S. R., MacGillavry H. D., Blanpied T. A. (2016).
A trans-synaptic nanocolumn aligns neurotransmitter release to receptors.
Nature
210–214. 10.1038/nature19058
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Testa I., Wurm C. A., Medda R., Rothermel E., von Middendorf C., Fölling J., et al. (2010).
Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength.
Biophys. J.
2686–2694. 10.1016/j.bpj.2010.08.012
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Voglmaier S. M., Kam K., Yang H., Fortin D. L., Hua Z., Nicoll R. A., et al. (2006).
Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling.
Neuron
71–84. 10.1016/j.neuron.2006.05.027
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Walker A. S., Burrone J., Meyer M. P. (2013).
Functional imaging in the zebrafish retinotectal system using RGECO.
Front. Neural Circuits
7
:
34
. 10.3389/fncir.2013.00034
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Wang W., Kim C. K., Ting A. Y. (2019).
Molecular tools for imaging and recording neuronal activity.
Nat. Chem. Biol.
101–110. 10.1038/s41589-018-0207-0
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Wang Y., Sugita S., Südhof T. C. (2000).
The RIM/NIM family of neuronal C2 domain proteins: interactions with Rab3 and a new class of Src homology 3 domain proteins.
J. Biol. Chem.
20033–20044. 10.1074/jbc.M909008199
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Wheeler D. B., Randall A., Tsien R. W. (1994).
Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission.
Science
107–111. 10.1126/science.7832825
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Xu-Friedman M. A., Harris K. M., Regehr W. G. (2001).
Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar purkinje cells.
J. Neurosci.
6666–6672. 10.1523/JNEUROSCI.21-17-06666.2001
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Zhang Y., Rózsa M., Bushey D., Zheng J., Reep D., Broussard G. J., et al. (2020).
jGCaMP8: a new suite of fast and sensitive calcium indicators.
10.25378/janelia.13148243 [
CrossRef
]
[
Google Scholar
]
Articles from
Frontiers in Synaptic Neuroscience
are provided here courtesy of
Frontiers Media SA