# 加载图片 读取彩色图像 image = cv2.imread('./Files_image/img1.jpg', cv2.IMREAD_COLOR) # print(image) # cv2.imshow("image", image) # 图像归一化,且转换为浮点型 fImg = image.astype(np.float32) fImg = fImg / 255.0 # 颜色空间转换 BGR转为HLS hlsImg = cv2.cvtColor(fImg, cv2.COLOR_BGR2HLS) l = 100 s = 100 MAX_VALUE = 100 # 调节饱和度和亮度的窗口 cv2.namedWindow("l and s", cv2.WINDOW_AUTOSIZE) def nothing(*arg): # 滑动块 cv2.createTrackbar("l", "l and s", l, MAX_VALUE, nothing) cv2.createTrackbar("s", "l and s", s, MAX_VALUE, nothing) # 调整饱和度和亮度后的效果 lsImg = np.zeros(image.shape, np.float32) # 调整饱和度和亮度 while True: hlsCopy = np.copy(hlsImg) # 得到 l 和 s 的值 l = cv2.getTrackbarPos('l', 'l and s') s = cv2.getTrackbarPos('s', 'l and s') # 1.调整亮度(线性变换) , 2.将hlsCopy[:, :, 1]和hlsCopy[:, :, 2]中大于1的全部截取 hlsCopy[:, :, 1] = (1.0 + l / float(MAX_VALUE)) * hlsCopy[:, :, 1] hlsCopy[:, :, 1][hlsCopy[:, :, 1] > 1] = 1 # 饱和度 hlsCopy[:, :, 2] = (1.0 + s / float(MAX_VALUE)) * hlsCopy[:, :, 2] hlsCopy[:, :, 2][hlsCopy[:, :, 2] > 1] = 1 # HLS2BGR lsImg = cv2.cvtColor(hlsCopy, cv2.COLOR_HLS2BGR) # 显示调整后的效果 cv2.imshow("l and s", lsImg) ch = cv2.waitKey(5) # 按 ESC 键退出 if ch == 27: break elif ch == ord('s'): # 按 s 键保存并退出 # 保存结果 lsImg = lsImg * 255 lsImg = lsImg.astype(np.uint8) cv2.imwrite("lsImg.jpg", lsImg) break # 关闭所有的窗口 cv2.destroyAllWindows() if __name__ == "__main__": main()