本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《 阿里云开发者社区用户服务协议 》和 《 阿里云开发者社区知识产权保护指引 》。如果您发现本社区中有涉嫌抄袭的内容,填写 侵权投诉表单 进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。 mean_hsv_I = [mean(I_h) mean(I_s) mean(I_v)]; % 一阶 std_hsv_I = [std(I_h) std(I_s) std(I_v)];% 二阶 skewness_hsv_I = [skewness(I_h) skewness(I_s) skewness(I_v)];% 三阶

纹理特征:


SIFT:

可参考经典demo:
[Keypoint detector (ubc.ca)](https://www.cs.ubc.ca/~lowe/keypoints/)


HOG:

clear
img = imread('1.jpg');
[featureVector,hogVisualization] = extractHOGFeatures(img);
figure;
imshow(img); 
hold on;
plot(hogVisualization);

LBP:

clc
clear
I = imread('1.jpg');
I = rgb2gray(I);
lbpFeatures = extractLBPFeatures(I,'CellSize',[32 32],'Normalization','None');
numNeighbors = 8;
numBins = numNeighbors*(numNeighbors-1)+3;
lbpCellHists = reshape(lbpFeatures,numBins,[]);
lbpCellHists = bsxfun(@rdivide,lbpCellHists,sum(lbpCellHists));
lbpFeatures = reshape(lbpCellHists,1,[]);