1.
BURNSTOCK G Purinergic nerves.
Pharmacol Rev.
1972;
24
(3):509–581.
[
PubMed
]
[
Google Scholar
]
2.
BURNSTOCK G Introduction to purinergic signaling.
Methods Mol Biol.
2020;
2041
:1–15. doi: 10.1007/978-1-4939-9717-6_1.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
BURNSTOCK G Purinergic receptors.
J Theor Biol.
1976;
62
(2):491–503. doi: 10.1016/0022-5193(76)90133-8.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
VAN CALKER D, MÜLLER M, HAMPRECHT B Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells.
J Neurochem.
1979;
33
(5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
BURNSTOCK G, KENNEDY C Is there a basis for distinguishing two types of P2-purinoceptor?
Gen Pharmacol.
1985;
16
(5):433–440. doi: 10.1016/0306-3623(85)90001-1.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
FREDHOLM B B, AP I J, JACOBSON K A, et al International union of pharmacology. ⅩⅩⅤ. Nomenclature and classification of adenosine receptors.
Pharmacol Rev.
2001;
53
(4):527–552.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
8.
LUSTIG K D, SHIAU A K, BRAKE A J, et al Expression cloning of an ATP receptor from mouse neuroblastoma cells.
Proc Natl Acad Sci U S A.
1993;
90
(11):5113–5117. doi: 10.1073/pnas.90.11.5113.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
BRAKE A J, WAGENBACH M J, JULIUS D New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor.
Nature.
1994;
371
(6497):519–523. doi: 10.1038/371519a0.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
ZHAO W, ZHANG Y, JI R, et al Expression of P2X receptors in the rat anterior pituitary.
Purinerg Signal.
2020;
16
(1):17–28. doi: 10.1007/s11302-019-09685-y.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
BURNSTOCK G. Purine and purinergic receptors. Brain Neurosci Adv, 2018, 2: 2398212818817494[2020-12-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058212/. doi: 10.1177/2398212818817494.
12.
TANG Z, YE W, CHEN H, et al Role of purines in regulation of metabolic reprogramming.
Purinerg Signal.
2019;
15
(4):423–438. doi: 10.1007/s11302-019-09676-z.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
BELLEFEUILLE S D, MOLLE C M, GENDRON F P Reviewing the role of P2Y receptors in specific gastrointestinal cancers.
Purinerg Signal.
2019;
15
(4):451–463. doi: 10.1007/s11302-019-09678-x.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
VELÁZQUEZ-MIRANDA E, DÍAZ-MUÑOZ M, VÁZQUEZ-CUEVAS F G Purinergic signaling in hepatic disease.
Purinerg Signal.
2019;
15
(4):477–489. doi: 10.1007/s11302-019-09680-3.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
KRÜGEL U Purinergic receptors in psychiatric disorders.
Neuropharmacology.
2016;
104
:212–225. doi: 10.1016/j.neuropharm.2015.10.032.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
JACOBSON K A, MÜLLER C E Medicinal chemistry of adenosine, P2Y and P2X receptors.
Neuropharmacology.
2016;
104
:31–49. doi: 10.1016/j.neuropharm.2015.12.001.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
ORTIZ R, ULRICH H, ZARATE C A, Jr, et al Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics.
Prog Neuropsychopharmacol Biol Psychiatry.
2015;
57
:117–131. doi: 10.1016/j.pnpbp.2014.10.016.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
CHROUSOS G P, GOLD P W The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis.
JAMA.
1992;
267
(9):1244–1252.
[
PubMed
]
[
Google Scholar
]
19.
SHAHRAJABIAN M H, SUN W, SOLEYMANI A, et al. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother Res, 2020[2020-12-28]. https://doi.org/10.1002/ptr.6888.
20.
POPPELAARS E S, KLACKL J, PLETZER B, et al. Social-evaluative threat: Stress response stages and influences of biological sex and neuroticism. Psychoneuroendocrinology, 2019, 109: 104378[2020-12-28]. https://doi.org/10.1016/j.psyneuen.2019.104378.
21.
HALL B S, MODA R N, LISTON C Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders.
Neurobiol Stress.
2015;
1
:174–183. doi: 10.1016/j.ynstr.2014.10.008.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
IWATA M, OTA K T, LI X Y, et al Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor.
Biol Psychiatry.
2016;
80
(1):12–22. doi: 10.1016/j.biopsych.2015.11.026.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
CAO X, LI L P, WANG Q, et al Astrocyte-derived ATP modulates depressive-like behaviors.
Nat Med.
2013;
19
(6):773–777. doi: 10.1038/nm.3162.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
KONGSUI R, BEYNON S B, JOHNSON S J, et al Chronic stress induces prolonged suppression of the P2X7 receptor within multiple regions of the hippocampus: a cumulative threshold spectra analysis.
Brain Behav Immun.
2014;
42
:69–80. doi: 10.1016/j.bbi.2014.05.017.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
PIATO A L, ROSEMBERG D B, CAPIOTTI K M, et al Acute restraint stress in zebrafish: behavioral parameters and purinergic signaling.
Neurochem Res.
2011;
36
(10):1876–1886. doi: 10.1007/s11064-011-0509-z.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
ZIMMERMANN F F, ALTENHOFEN S, KIST L W, et al Unpredictable chronic stress alters adenosine metabolism in zebrafish brain.
Mol Neurobiol.
2016;
53
(4):2518–2528. doi: 10.1007/s12035-015-9270-7.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
KASTER M P, MACHADO N J, SILVA H B, et al Caffeine acts through neuronal adenosine A
2A
receptors to prevent mood and memory dysfunction triggered by chronic stress
.
Proc Natl Acad Sci U S A.
2015;
112
(25):7833–7838. doi: 10.1073/pnas.1423088112.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
28.
CRESPO M, LEÓN-NAVARRO D A, MARTÍN M Early-life hyperthermic seizures upregulate adenosine A(2A) receptors in the cortex and promote depressive-like behavior in adult rats.
Epilepsy Behav.
2018;
86
:173–178. doi: 10.1016/j.yebeh.2018.06.048.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
29.
HAO T, DU X, YANG S, et al. Astrocytes-induced neuronal inhibition contributes to depressive-like behaviors during chronic stress. Life Sci, 2020, 258: 118099[2020-12-28]. https://doi.org/10.1016/j.lfs.2020.118099.
30.
ABBRACCHIO M P, BURNSTOCK G, VERKHRATSKY A, et al Purinergic signalling in the nervous system: an overview.
Trends Neurosci.
2009;
32
(1):19–29. doi: 10.1016/j.tins.2008.10.001.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
RIBEIRO D E, RONCALHO A L, GLASER T, et al. P2X7 receptor signaling in stress and depression. Int J Mol Sci, 2019, 20(11): 2778[2020-12-28]. https://doi.org/10.3390/ijms20112778.
32.
HISAOKA-NAKASHIMA K, AZUMA H, ISHIKAWA F, et al. Corticosterone induces HMGB1 release in primary cultured rat cortical astrocytes: involvement of pannexin-1 and P2X7 receptor-dependent mechanisms. Cells, 2020, 9(5): 1068[2020-12-28]. https://doi.org/10.3390/cells9051068.
33.
JIMENEZ-MATEOS E M, SMITH J, NICKE A, et al Regulation of P2X7 receptor expression and function in the brain.
Brain Res Bull.
2019;
151
:153–163. doi: 10.1016/j.brainresbull.2018.12.008.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
34.
METZGER M W, WALSER S M, APRILE-GARCIA F, et al Genetically dissecting
P
2
rx
7 expression within the central nervous system using conditional humanized mice
.
Purinerg Signal.
2017;
13
(2):153–170. doi: 10.1007/s11302-016-9546-z.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
35.
ILLES P, VERKHRATSKY A, TANG Y. Pathological ATPergic signaling in major depression and bipolar disorder. Front Mol Neurosci, 2019, 12: 331[2020-12-28]. https://doi.org/10.3389/fnmol.2019.00331.
36.
FAROOQ R K, TANTI A, AINOUCHE S, et al A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice.
Psychoneuroendocrinology.
2018;
97
:120–130. doi: 10.1016/j.psyneuen.2018.07.016.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
37.
YUE N, HUANG H, ZHU X, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation, 2017, 14(1): 102[2020-12-28]. https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-0865-y. doi: 10.1186/s12974-017-0865-y.
38.
DOMINGOS L B, HOTT S C, TERZIAN A L B, et al P2X7 purinergic receptors participate in the expression and extinction processes of contextual fear conditioning memory in mice.
Neuropharmacology.
2018;
128
:474–481. doi: 10.1016/j.neuropharm.2017.08.005.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
39.
WEI L, SYED MORTADZA S A, YAN J, et al ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics.
Neurosci Biobehav Rev.
2018;
87
:192–205. doi: 10.1016/j.neubiorev.2018.02.005.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
HU S, SUN Q, DU W J, et al Adult stress promotes purinergic signaling to induce visceral pain in rats with neonatal maternal deprivation.
Neurosci Bull.
2020;
36
(11):1271–1280. doi: 10.1007/s12264-020-00575-7.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
41.
BORTOLATO M, YARDLEY M M, KHOJA S, et al Pharmacological insights into the role of P2X4 receptors in behavioural regulation: lessons from ivermectin.
Int J Neuropsychopharmacol.
2013;
16
(5):1059–1070. doi: 10.1017/S1461145712000909.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
42.
LI L, ZOU Y, LIU B, et al Contribution of the P2X4 receptor in rat hippocampus to the comorbidity of chronic pain and depression.
ACS Chem Neurosci.
2020;
11
(24):4387–4397. doi: 10.1021/acschemneuro.0c00623.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
43.
VERMA R, CRONIN C G, HUDOBENKO J, et al Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke.
Brain Behav Immun.
2017;
66
:302–312. doi: 10.1016/j.bbi.2017.07.155.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
44.
KITTNER H, FRANKE H, FISCHER W, et al Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production.
Neuropsychopharmacology.
2003;
28
(3):435–444. doi: 10.1038/sj.npp.1300043.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
45.
WAWRZYNIAK A J, DILSIZIAN V, KRANTZ D S, et al High concordance between mental stress-induced and adenosine-induced myocardial ischemia assessed using SPECT in heart failure patients: hemodynamic and biomarker correlates.
J Nucl Med.
2015;
56
(10):1527–1533. doi: 10.2967/jnumed.115.157990.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
46.
GOMES C V, KASTER M P, TOMÉ A R, et al Adenosine receptors and brain diseases: neuroprotection and neurodegeneration.
Biochim Biophys Acta.
2011;
1808
(5):1380–1399. doi: 10.1016/j.bbamem.2010.12.001.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
47.
LI Y, LI L, WU J, et al. Activation of astrocytes in hippocampus decreases fear memory through adenosine A1 receptors. Elife, 2020, 9: e57155[2020-12-28]. https://elifesciences.org/articles/57155. doi: 10.7554/eLife.57155.
48.
PASMAN W J, BOESSEN R, DONNER Y, et al. Effect of caffeine on attention and alertness measured in a home-setting, using web-based cognition tests. JMIR Res Protoc, 2017, 6(9): e169[2020-12-28]. https://www.researchprotocols.org/2017/9/e169/. doi: 10.2196/resprot.6727.
49.
LEEM Y H, JANG J H, PARK J S, et al Exercise exerts an anxiolytic effect against repeated restraint stress through 5-HT
2A
-mediated suppression of the adenosine A
2A
receptor in the basolateral amygdala
.
Psychoneuroendocrinology.
2019;
108
:182–189. doi: 10.1016/j.psyneuen.2019.06.005.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
50.
OLIVEIRA L, COSTA A C, NORONHA-MATOS J B, et al Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A
2A
receptors and redistribution of synaptic vesicles
.
Neuropharmacology.
2015;
89
:64–76. doi: 10.1016/j.neuropharm.2014.09.004.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
51.
PINHEIRO H, GASPAR R, BAPTISTA F I, et al. Adenosine A2A receptor blockade modulates glucocorticoid-induced morphological alterations in axons, but not in dendrites, of hippocampal neurons. Front Pharmacol, 2018, 9: 219[2020-12-28]. https://doi.org/10.3389/fphar.2018.00219.
52.
BLACKER C J, MILLISCHER V, WEBB L M, et al EAAT2 as a research target in bipolar disorder and unipolar depression: a systematic review.
Mol Neuropsychiatry.
2020;
5
(Suppl 1):44–59. doi: 10.1159/000501885.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
53.
MATOS M, SHEN H Y, AUGUSTO E, et al Deletion of adenosine A
2A
receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia
.
Biol Psychiatry.
2015;
78
(11):763–774. doi: 10.1016/j.biopsych.2015.02.026.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
54.
SERCHOV T, SCHWARZ I, THEISS A, et al. Enhanced adenosine A1 receptor and homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology, 2020, 162: 107834[2020-12-28]. doi: 10.1016/j.neuropharm.2019.107834.
55.
SERCHOV T, CLEMENT H W, SCHWARZ M K, et al Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive-like behavior via induction of homer1a.
Neuron.
2015;
87
(3):549–562. doi: 10.1016/j.neuron.2015.07.010.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
56.
FUENTES E, PALOMO I Extracellular ATP metabolism on vascular endothelial cells: a pathway with pro-thrombotic and anti-thrombotic molecules.
Vascul Pharmacol.
2015;
75
:1–6. doi: 10.1016/j.vph.2015.05.002.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
57.
VILLANUEVA-CASTILLO B, RIVERA-MANCILLA E, HAANES K A, et al The role of purinergic P2Y
12
and P2Y
13
receptors in ADPβS-induced inhibition of the cardioaccelerator sympathetic drive in pithed rats
.
Purinerg Signal.
2020;
16
(1):73–84. doi: 10.1007/s11302-020-09689-z.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
58.
ZHONG J, AMINA S, LIANG M, et al. Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice. Front Neurosci, 2016, 10: 304[2020-12-28]. https://doi.org/10.3389/fnins.2016.00304.
59.
BURNSTOCK G Purinergic signalling and disorders of the central nervous system.
Nat Rev Drug Discov.
2008;
7
(7):575–590. doi: 10.1038/nrd2605.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
60.
PENG W, WU Z, SONG K, et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science, 2020, 369(6508): eabb0556[2020-12-28]. https://science.sciencemag.org/content/369/6508/eabb0556.long. doi: 10.1126/science.abb0556.
61.
CIEŚLAK M, CZARNECKA J, ROSZEK K The roles of purinergic signaling in psychiatric disorders.
Acta Biochim Pol.
2016;
63
(1):1–9. doi: 10.18388/abp.2015_1004.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
62.
BURNSTOCK G The therapeutic potential of purinergic signalling.
Biochem Pharmacol.
2018;
151
:157–165. doi: 10.1016/j.bcp.2017.07.016.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
63.
CHEN J F, CUNHA R A The belated US FDA approval of the adenosine A
2A
receptor antagonist istradefylline for treatment of Parkinson's disease
.
Purinerg Signal.
2020;
16
(2):167–174. doi: 10.1007/s11302-020-09694-2.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]