相关文章推荐
阳光的海龟  ·  OpenCv3 ...·  9 月前    · 
另类的扁豆  ·  try catch ...·  1 年前    · 
慈祥的紫菜汤  ·  A thread pool with ...·  1 年前    · 
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Sichuan Da Xue Xue Bao Yi Xue Ban. 2021 Jan 20; 52(1): 33–38.
PMCID: PMC10408934

Language: Chinese | English

嘌呤信号与心理应激研究进展

A Review of the State of Purinergic Signaling and Psychological Stress

文静 任 1, 2 and 勇 唐 1, 2, *

文静 任

成都中医药大学 (成都 610075), Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China 针灸与时间生物学四川省重点实验室 (成都 610075), Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China

Find articles by 文静 任

勇 唐

成都中医药大学 (成都 610075), Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China 针灸与时间生物学四川省重点实验室 (成都 610075), Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China 成都中医药大学 (成都 610075), Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China 针灸与时间生物学四川省重点实验室 (成都 610075), Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu 610075, China

E-mail: nc.ude.mctudc@gnoygnat

应激(stress)的概念最早由Hans Selye提出,是生物体面对应激源时体内表现出的一种不和谐或体内稳态受到威胁的一种身心紧张的状态 [ 18 ] 。通过激活下丘脑-垂体-肾上腺轴和自主神经系统,导致肾上腺皮质激素的合成和分泌,增加皮质醇释放水平,引起恐惧、抑郁、焦虑情绪等一系列心理应激反应 [ 19 - 21 ] 。心理应激是否会引起嘌呤信号的变化?嘌呤信号如何介导心理应激?本文拟对近年来的相关研究进展进行综述,以期为未来的研究提供新的思考和思路。

1. 心理应激诱发嘌呤信号反应

1.1. 心理应激引起嘌呤信号ATP释放及受体反应异常

心理应激分为急性心理应激及慢性心理应激。心理应激主要引起嘌呤信号ATP释放及P2X7、P2X2受体反应异常。采用限制小鼠活动1 h建立急性心理应激模型,运用微透析法检测ATP浓度发现,急性应激后15 min海马ATP释放增加约1.5倍,30 min下降到接近基线水平,60 min后释放再次增加约1.5倍;ATP的异常释放进一步激活嘌呤信号P2X7受体及NLRP3炎性小体,导致白细胞介素(interleukin,IL)-1β的释放增加;给予腹腔注射P2X7受体拮抗剂A-804598(10 mg/kg)则完全阻断IL-1β及另一种应激诱导的细胞因子肿瘤坏死因子α的释放,提示急性心理应激状态下ATP释放增加,进一步激活嘌呤受体,出现炎症反应,从而导致情绪异常 [ 22 ] 。由社会挫败诱导建立的慢性心理应激(抑郁)模型,使用ATP生物发光法检测到社会挫败慢性心理应激模型前额叶皮质、海马切片孵育液中ATP的浓度较低;给予ATP及激活星形胶质细胞P2X2受体可改善慢性心理应激抑郁样行为 [ 23 ] 。长期暴露于慢性束缚应激后,海马CA1、CA2、CA3、中部透明层、外侧透明层、齿状回分子层1、齿状回分子层2及海马起层P2X7受体表达被抑制,当应激停止后,受体表达逐渐恢复 [ 24 ] ,这与急性应激状态下P2X7受体表达结果不同。这提示,嘌呤信号ATP及其受体对不同心理应激的反应不同。急性心理应激引起ATP释放增多,通过激活P2X7受体诱发炎症反应;慢性心理应激ATP释放不足,可能致P2X2受体功能反应低下。在中枢神经系统,心理应激可引起海马、杏仁核、下丘脑室旁核、中脑导水管周围灰质、垂体、前扣带回等多个相关脑区反应。除了海马外,其他脑区的嘌呤信号ATP及其受体变化如何?另外,嘌呤信号ATP的释放可来源于神经元、星形胶质细胞、小胶质细胞等,不同心理应激,其反应是否类似?或者是否不同心理应激反应,诱导反应的神经细胞类型不一?如何理解急性心理应激嘌呤信号ATP释放增加,而慢性心理应激释放不足?背后的机制是否为细胞ATP的释放功能耗竭,还是其他原因?这些都有待进一步研究。

1.2. 心理应激引起腺苷(adenosine,ADO)及其受体异常

心理应激可引起ATP释放,ATP在CD39、CD73水解酶的作用下,分解为ADO。因此,心理应激从理论上也可能会导致ADO的变化。有研究将斑马鱼限制在2 mL的微型离心管中造成急性心理应激模型,通过RT-PCR检测发现 adora 1 adora 2 a . 1 adora 2a . 2 adora 2b mRNA水平升高 [ 25 ] ;联合给予活动限制、社会隔离等慢性不可预知的心理应激后,采用腺苷脱氨酶法测定斑马鱼大脑胞外ADO水平,结果显示在孵育5、180 min时,ADO增加1.32及1.17倍 [ 26 ] 。ADO通过P1受体介导其生物作用,具体包括4个不同的亚群——A 1 、A 2A 、A 2B 和A 3 受体,其中A 1 及A 2A 受体主要在心理应激导致的情绪障碍疾病中发挥调节作用。通过采用放射性配体结合试验检测小鼠慢性不可预知的心理应激模型海马神经元A 2A 受体的结果发现,暴露于慢性应激后,海马神经元A 2A 受体表达增加 [ 27 ] ;生命早期暴露于不良生活事件应激后,大鼠成年后强迫游泳抑郁样行为机会增加,并且通过放射性配体结合试验检测发现其皮层A 2A 受体表达上升 [ 28 ] 。此外,慢性社会挫败导致的慢性应激模型中,前额叶皮质及海马特异性星形胶质细胞A 1 受体的活性被抑制 [ 29 ] 。以上结果显示,斑马鱼及小鼠应激模型ADO及其受体出现异常改变。ADO及其受体A 2A 在心理应激模型中表达增高,但A 1 受体在慢性应激模型中表达降低,这提示在应激模型中,有可能A 1 、A 2A 之间的平衡被打破。但ADO及其受体到底扮演了什么角色还不清楚,有待于进一步研究。另外,ATP通过CD39、CD73水解为二磷酸腺苷(adenonisine disphosphate,ADP)、一磷酸腺苷(adenosine monophosphate,AMP)及ADO,其中CD39、CD73、ADP及AMP在心理应激发生后表现出何种变化,也是未来研究的方向。

2. 嘌呤信号介导心理应激

2.1. ATP及其受体介导心理应激

研究发现,ATP及其受体参与心理应激。胞外ATP释放后,主要可激活P2X及P2Y受体,其中P2X7受体对ATP的亲和力最低,在胞外ATP的浓度达到100~1 000 μmol/L时被激活;而其余受体被ATP激活的50%有效浓度为1~10 μmol/L [ 30 ] 。目前的研究主要集中在表达于星形胶质细胞、小胶质细胞的P2X7、P2X4、P2Y1和神经元的P2X3受体。研究发现,ATP通过P2X7受体介导的信号通路可以改变突触可塑性、神经元变性以及认知和行为功能,在调节抑郁症相关的病理过程中发挥重要作用 [ 31 ] 。P2X7受体广泛分布于中枢神经系统,如额叶皮质和海马区,主要分布于星形胶质细胞、小胶质细胞、少突胶质细胞等非神经元细胞上,参与心理应激导致的神经炎症 [ 32 - 34 ] 。P2X7受体的激活导致IL-1β的释放,IL-1β反过来诱导促肾上腺皮质激素释放激素的分泌,从而导致促肾上腺皮质激素和皮质醇的分泌,引起心理应激相关情绪障碍疾病 [ 35 ] 。通过观察糖皮质激素处理后的星形胶质细胞也发现,糖皮质激素可能通过P2X7受体介导高迁移率族蛋白B1的释放,进而导致神经炎症,出现心理应激相关情绪障碍,如焦虑、抑郁及恐惧等 [ 32 ] 。P2X7受体的抑制剂Brilliant Blue G(BBG)的使用也改善了因慢性应激诱导的小鼠大脑皮层、海马区和基底核的小胶质细胞激活,以及HPA轴的失调 [ 36 ] ;并且P2X7受体的拮抗剂BBG或A438079均可预防大鼠因慢性不可预知的应激导致的抑郁样行为, P 2 X 7敲除小鼠在暴露于慢性心理应激后也没有出现任何类似抑郁或焦虑的行为 [ 37 ] 。但在小鼠情境恐惧条件反射记忆的研究中发现,使用P2X7受体选择性拮抗剂A438079会损害情境恐惧记忆的消除学习,恐惧记忆的消除与焦虑行为关系密切,说明P2X7受体参与抑郁与焦虑的作用不同 [ 38 ] 。P2X7受体在应激导致的神经炎症中发挥重要作用,因此,P2X7受体是治疗神经炎性疾病,如抑郁、焦虑和双相情感障碍的潜在药物靶点 [ 16 , 39 ]

此外,新生儿在接受早期的母婴分离的心理应激刺激以及成年后的应激源暴露会导致去甲肾上腺素-β 2 肾上腺素能信号的增强,研究发现P2X3受体在背根神经节β 2 肾上腺素受体阳性神经元中共表达,且去甲肾上腺素还显著增强了ATP诱导的钙信号,在暴露于应激源后,P2X3受体蛋白表达也显著增强,同时ATP诱发的电流密度也增强,这可能是由β 2 肾上腺素信号上调所介导的,鞘内注射P2X3受体拮抗剂A317491也起到了缓解应激导致的内脏痛的作用 [ 40 ] 。因此,P2X3受体可能也在应激的发生发展中扮演着重要角色。此外,P2X4受体在调节应激相关的情绪障碍方面也具有潜力:腹腔注射P2X4正异构效应物伊维菌素,小鼠在强迫游泳及悬尾实验中出现抑郁样行为,缓解了高架十字迷宫中的焦虑样行为 [ 41 ] 。P2X4拮抗剂5-BDBD则减轻了因神经病理痛及慢性不可预知应激导致的海马神经元的损伤及抑郁样行为 [ 42 ] 。在 P 2 X 4髓细胞特异性敲除后进一步降低卒中后脑神经营养因子水平并导致更严重的抑郁样行为 [ 43 ] 。因此,不同部位表达的P2X4受体可能在应激中扮演不同的角色。此外,P2Y1受体也被发现在焦虑行为中发挥作用。通过侧脑室注射P2Y1受体的特异性拮抗剂MRS 2179发现减轻了高架十字迷宫实验中的焦虑样行为 [ 44 ] 。但在另一项研究中却并未发现MRS 2179参与到焦虑行为中 [ 38 ] 。因此,P2Y1是否参与到应激相关情绪障碍中仍存在争议。

2.2. ADO及其受体介导心理应激

ADO及其受体在介导心理应激导致的情绪障碍疾病中也发挥着重要作用。研究发现,急性心理应激诱导心肌缺血与ADO诱导的心肌缺血具有高度一致性 [ 45 ] 。我们可以从中推论ADO的使用可能模拟了急性心理应激反应。ADO对脑功能的影响主要依赖于A 1 和A 2A 受体的活性,而A 2B 和A 3 受体对中枢神经系统功能的作用有限 [ 46 ] 。因此,ADO主要通过A 1 和A 2A 受体介导应激相关情绪障碍,如抑郁、焦虑及恐惧等。星形胶质细胞的激活增加了细胞外ATP和ADO的浓度,A 1 受体介导了星形胶质细胞激活态下对恐惧记忆的消除,特异性A 1 受体拮抗剂8-cyclopentyl-1,3-dimethylxanthine(CPT)的使用则阻断了星形胶质细胞对恐惧记忆的清除作用 [ 47 ] 。除了特异性化合物,日常生活中,咖啡因作为茶及咖啡的主要成分,常作为非选择性A 1 和A 2A 受体拮抗剂使用,通过量化正常人群咖啡因的摄入以及评测志愿者的情绪变化发现咖啡因的摄入水平与正常人群的认知及情绪变化有密切关系 [ 48 ] 。咖啡因作为A 2A 受体的拮抗剂可有效预防慢性心理应激引发的情绪和记忆障碍 [ 27 ] 。在另一项研究中发现反复的慢性心理应激会导致焦虑抑郁行为,而运动在改善焦虑抑郁行为的同时,也降低了A 2A 受体介导的蛋白激酶A的激活,通过使用选择性A 2A 受体激动剂 {"type":"entrez-protein","attrs":{"text":"CGS21680","term_id":"878113053","term_text":"CGS21680"}} CGS21680 在基底外侧杏仁核中局部激活A 2A 受体,则拮抗了运动的抗焦虑作用 [ 49 ] 。此外,A 2A 受体的激活被证明参与到糖皮质激素起效的过程中 [ 50 ] 。产前超量的糖皮质激素的干预可增加后代出现精神类疾病的易感性,在这一过程中发现糖皮质激素地塞米松通过A 2A 受体的激活产生作用 [ 51 ] 。兴奋性氨基酸转运蛋白2(excitatory amino acid transporter 2,EAAT2)是哺乳动物大脑中主要的谷氨酸转运蛋白,参与到胶质细胞中的谷氨酸转运过程,慢性心理应激与EAAT2表达水平下降相关,并且EAAT2表达的下降可加重抑郁样行为 [ 52 ] 。星形胶质细胞 A 2A 受体的选择性敲除可损害谷氨酸的摄取,降低 EAAT 2 mRNA和蛋白表达,心理应激诱导的EAAT2表达下调可能是由于星形胶质细胞A 2A 的缺失所致 [ 53 ] 。因此A 2A 受体对于慢性应激导致的抑郁及焦虑行为不仅具有治疗作用,还具有预防作用,可作为治疗慢性应激导致的情绪疾病的靶点 [ 27 ] 。与A 2A 受体相反,激活前额叶皮层的A 1 受体有利于改善慢性心理应激模型中出现的抑郁情绪 [ 54 ] 。并且抑郁症的非药物治疗方式上调了大脑中的A 1 受体的表达水平,而 A 1 受体基因敲除小鼠表现出了更严重的抑郁样行为,通过对A 1 过表达的转基因小鼠抑郁样行为的研究中发现,上调A 1 受体有利于改善抑郁样行为,此种抗抑郁的作用可能通过增加内侧前额叶皮层homer1a的表达介导 [ 55 ] 。之后的一项研究发现,皮层A 1 受体过表达后可有效减轻抑郁样行为,但通过观察皮层A 1 受体过表达、海马A 1 受体无过表达的转基因小鼠在反复的强迫游泳应激导致的应激模型,显示相对于海马A 1 受体无过表达转基因鼠,海马A 1 受体过表达转基因鼠表现出严重的抑郁行为,并且通过与海马homer1a结合起作用 [ 54 ] 。因此,A 1 受体在不同的脑区可能在应激中扮演不同的角色。由于将ATP分解为ADO所需的时间比分解为ADP所需的时间更长,并且需要多种酶的表达 [ 56 ] ,因此,抑制ADP可比抑制ADO更快地减少去甲肾上腺素的释放 [ 57 ] 。在旷场实验中,心理应激开始后5 min,脑脊液中下丘脑催产素(hypothalamic oxytocin,OT)浓度升高,而β-烟酰胺腺嘌呤二核苷酸、环腺苷二磷酸核糖及ADP可以升高触发OT释放的细胞内游离钙离子浓度,且可能通过下丘脑的CD38及瞬时受体电位阳离子通道M2介导 [ 58 ] 。因此,ADP也可能在应激中发挥作用。

3. 局限与展望

嘌呤能受体可分为P1和P2受体,分别被胞外的ADO和ATP激活。P1受体是G蛋白偶联受体,介导ADO的生物作用。具体包括A 1 、A 2A 、A 2B 和A 3 4个不同的亚群。P2受体包括P2X和P2Y两大家族,被胞外的ATP激活。P2X受体是配体门控离子通道,对阳离子有选择性,有P2X1~7七个亚型 [ 10 ] ;P2Y受体是G蛋白偶联受体,包括P2Y1、P2Y2、P2Y4、P2Y6、P2Y11、P2Y12、P2Y13和P2Y14八种 [ 11 ] 。此外,胞外核苷被外核苷酶如CD39和CD73降解,可快速地将ATP分解为ADP、AMP和ADO。其中CD39将ATP和ADP转化为AMP,CD73将AMP转化为ADO。嘌呤信号及其受体参与到心理应激的发生及发展过程中,并与心理应激导致的情绪障碍疾病密切相关。以往的研究多集中于ATP、ADO以及P2X2、P2X3、P2X4、P2X7、P2Y1、A 1 、A 2A 受体,在ATP代谢至ADO的过程,ADP、AMP以及CD39、CD73也发挥着重要作用,那么这些物质是否也与应激的发生及发展有着某种联系?此外与ATP及ADP结合的P2Y2、4、6、11~14这7个受体以及与ATP结合的另外的P2X受体是否也介入到心理应激的生理病理过程中?

神经元突触前胞外释放的ATP作用于突触后P2X2、P2X4、P2X6以及P2Y受体,这些受体同样被ADP、尿苷二磷酸和尿苷三磷酸激活。ATP被外核苷酶分解ADO,ADO通过A 1 受体作为突触前抑制调节剂,ATP本身可以通过P2Y受体抑制递质释放或通过P2X3受体增强谷氨酸释放起到突触前作用 [ 59 ] 。由于ATP在胶质-神经元相互作用中扮演着重要角色,那么ATP参与的神经-胶质的相互作用是否也在一个层面上影响着心理应激的发生和发展?且ATP释放到胞外可被迅速降解,那么在应激发生过程中ATP又发挥了怎样的生物学作用?以往研究多采用生物发光法、微透析等技术检测心理应激状态下ATP的释放,今后的研究中可采用新技术监测疾病过程中嘌呤信号的实时表达,如ATP生物传感器、探针 [ 60 ] 等。也可通过对心理应激相关疾病患者的单核苷酸多态性的检测,明确嘌呤信号相关位点的改变是否会影响该疾病的易感性,从而更进一步阐明嘌呤信号在疾病发生及发展中所扮演的角色。

嘌呤能化合物正在用于探索治疗精神类疾病 [ 61 ] ,如黄嘌呤衍生物丙戊茶碱被用于治疗精神分裂症,别嘌呤醇和双嘧达莫用于治疗双相情感障碍 [ 62 ] 。是否可以将已经通过FDA批准的嘌呤信号靶点药物(如伊曲茶碱、氯吡格雷、替卡格雷、普拉格雷等) [ 58 , 62 - 63 ] 的应用拓展到心理应激领域,值得未来深入研究。

Funding Statement

国家重点研发计划(No.2019YFC1709101)资助

References

1. BURNSTOCK G Purinergic nerves. Pharmacol Rev. 1972; 24 (3):509–581. [ PubMed ] [ Google Scholar ]
2. BURNSTOCK G Introduction to purinergic signaling. Methods Mol Biol. 2020; 2041 :1–15. doi: 10.1007/978-1-4939-9717-6_1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. BURNSTOCK G Purinergic receptors. J Theor Biol. 1976; 62 (2):491–503. doi: 10.1016/0022-5193(76)90133-8. [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. LONDOS C, COOPER D M, WOLFF J Subclasses of external adenosine receptors. Proc Natl Acad Sci U S A. 1980; 77 (5):2551–2554. doi: 10.1073/pnas.77.5.2551. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. VAN CALKER D, MÜLLER M, HAMPRECHT B Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979; 33 (5):999–1005. doi: 10.1111/j.1471-4159.1979.tb05236.x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. BURNSTOCK G, KENNEDY C Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985; 16 (5):433–440. doi: 10.1016/0306-3623(85)90001-1. [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. FREDHOLM B B, AP I J, JACOBSON K A, et al International union of pharmacology. ⅩⅩⅤ. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001; 53 (4):527–552. [ PMC free article ] [ PubMed ] [ Google Scholar ]
8. LUSTIG K D, SHIAU A K, BRAKE A J, et al Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1993; 90 (11):5113–5117. doi: 10.1073/pnas.90.11.5113. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. BRAKE A J, WAGENBACH M J, JULIUS D New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature. 1994; 371 (6497):519–523. doi: 10.1038/371519a0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. ZHAO W, ZHANG Y, JI R, et al Expression of P2X receptors in the rat anterior pituitary. Purinerg Signal. 2020; 16 (1):17–28. doi: 10.1007/s11302-019-09685-y. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. BURNSTOCK G. Purine and purinergic receptors. Brain Neurosci Adv, 2018, 2: 2398212818817494[2020-12-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058212/. doi: 10.1177/2398212818817494.
12. TANG Z, YE W, CHEN H, et al Role of purines in regulation of metabolic reprogramming. Purinerg Signal. 2019; 15 (4):423–438. doi: 10.1007/s11302-019-09676-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. BELLEFEUILLE S D, MOLLE C M, GENDRON F P Reviewing the role of P2Y receptors in specific gastrointestinal cancers. Purinerg Signal. 2019; 15 (4):451–463. doi: 10.1007/s11302-019-09678-x. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. VELÁZQUEZ-MIRANDA E, DÍAZ-MUÑOZ M, VÁZQUEZ-CUEVAS F G Purinergic signaling in hepatic disease. Purinerg Signal. 2019; 15 (4):477–489. doi: 10.1007/s11302-019-09680-3. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. KRÜGEL U Purinergic receptors in psychiatric disorders. Neuropharmacology. 2016; 104 :212–225. doi: 10.1016/j.neuropharm.2015.10.032. [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. JACOBSON K A, MÜLLER C E Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology. 2016; 104 :31–49. doi: 10.1016/j.neuropharm.2015.12.001. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. ORTIZ R, ULRICH H, ZARATE C A, Jr, et al Purinergic system dysfunction in mood disorders: a key target for developing improved therapeutics. Prog Neuropsychopharmacol Biol Psychiatry. 2015; 57 :117–131. doi: 10.1016/j.pnpbp.2014.10.016. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. CHROUSOS G P, GOLD P W The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA. 1992; 267 (9):1244–1252. [ PubMed ] [ Google Scholar ]
19. SHAHRAJABIAN M H, SUN W, SOLEYMANI A, et al. Traditional herbal medicines to overcome stress, anxiety and improve mental health in outbreaks of human coronaviruses. Phytother Res, 2020[2020-12-28]. https://doi.org/10.1002/ptr.6888.
20. POPPELAARS E S, KLACKL J, PLETZER B, et al. Social-evaluative threat: Stress response stages and influences of biological sex and neuroticism. Psychoneuroendocrinology, 2019, 109: 104378[2020-12-28]. https://doi.org/10.1016/j.psyneuen.2019.104378.
21. HALL B S, MODA R N, LISTON C Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders. Neurobiol Stress. 2015; 1 :174–183. doi: 10.1016/j.ynstr.2014.10.008. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. IWATA M, OTA K T, LI X Y, et al Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry. 2016; 80 (1):12–22. doi: 10.1016/j.biopsych.2015.11.026. [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. CAO X, LI L P, WANG Q, et al Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med. 2013; 19 (6):773–777. doi: 10.1038/nm.3162. [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. KONGSUI R, BEYNON S B, JOHNSON S J, et al Chronic stress induces prolonged suppression of the P2X7 receptor within multiple regions of the hippocampus: a cumulative threshold spectra analysis. Brain Behav Immun. 2014; 42 :69–80. doi: 10.1016/j.bbi.2014.05.017. [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. PIATO A L, ROSEMBERG D B, CAPIOTTI K M, et al Acute restraint stress in zebrafish: behavioral parameters and purinergic signaling. Neurochem Res. 2011; 36 (10):1876–1886. doi: 10.1007/s11064-011-0509-z. [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. ZIMMERMANN F F, ALTENHOFEN S, KIST L W, et al Unpredictable chronic stress alters adenosine metabolism in zebrafish brain. Mol Neurobiol. 2016; 53 (4):2518–2528. doi: 10.1007/s12035-015-9270-7. [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. KASTER M P, MACHADO N J, SILVA H B, et al Caffeine acts through neuronal adenosine A 2A receptors to prevent mood and memory dysfunction triggered by chronic stress . Proc Natl Acad Sci U S A. 2015; 112 (25):7833–7838. doi: 10.1073/pnas.1423088112. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
28. CRESPO M, LEÓN-NAVARRO D A, MARTÍN M Early-life hyperthermic seizures upregulate adenosine A(2A) receptors in the cortex and promote depressive-like behavior in adult rats. Epilepsy Behav. 2018; 86 :173–178. doi: 10.1016/j.yebeh.2018.06.048. [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. HAO T, DU X, YANG S, et al. Astrocytes-induced neuronal inhibition contributes to depressive-like behaviors during chronic stress. Life Sci, 2020, 258: 118099[2020-12-28]. https://doi.org/10.1016/j.lfs.2020.118099.
30. ABBRACCHIO M P, BURNSTOCK G, VERKHRATSKY A, et al Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009; 32 (1):19–29. doi: 10.1016/j.tins.2008.10.001. [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. RIBEIRO D E, RONCALHO A L, GLASER T, et al. P2X7 receptor signaling in stress and depression. Int J Mol Sci, 2019, 20(11): 2778[2020-12-28]. https://doi.org/10.3390/ijms20112778.
32. HISAOKA-NAKASHIMA K, AZUMA H, ISHIKAWA F, et al. Corticosterone induces HMGB1 release in primary cultured rat cortical astrocytes: involvement of pannexin-1 and P2X7 receptor-dependent mechanisms. Cells, 2020, 9(5): 1068[2020-12-28]. https://doi.org/10.3390/cells9051068.
33. JIMENEZ-MATEOS E M, SMITH J, NICKE A, et al Regulation of P2X7 receptor expression and function in the brain. Brain Res Bull. 2019; 151 :153–163. doi: 10.1016/j.brainresbull.2018.12.008. [ PubMed ] [ CrossRef ] [ Google Scholar ]
34. METZGER M W, WALSER S M, APRILE-GARCIA F, et al Genetically dissecting P 2 rx 7 expression within the central nervous system using conditional humanized mice . Purinerg Signal. 2017; 13 (2):153–170. doi: 10.1007/s11302-016-9546-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
35. ILLES P, VERKHRATSKY A, TANG Y. Pathological ATPergic signaling in major depression and bipolar disorder. Front Mol Neurosci, 2019, 12: 331[2020-12-28]. https://doi.org/10.3389/fnmol.2019.00331.
36. FAROOQ R K, TANTI A, AINOUCHE S, et al A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology. 2018; 97 :120–130. doi: 10.1016/j.psyneuen.2018.07.016. [ PubMed ] [ CrossRef ] [ Google Scholar ]
37. YUE N, HUANG H, ZHU X, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation, 2017, 14(1): 102[2020-12-28]. https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-0865-y. doi: 10.1186/s12974-017-0865-y.
38. DOMINGOS L B, HOTT S C, TERZIAN A L B, et al P2X7 purinergic receptors participate in the expression and extinction processes of contextual fear conditioning memory in mice. Neuropharmacology. 2018; 128 :474–481. doi: 10.1016/j.neuropharm.2017.08.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
39. WEI L, SYED MORTADZA S A, YAN J, et al ATP-activated P2X7 receptor in the pathophysiology of mood disorders and as an emerging target for the development of novel antidepressant therapeutics. Neurosci Biobehav Rev. 2018; 87 :192–205. doi: 10.1016/j.neubiorev.2018.02.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
40. HU S, SUN Q, DU W J, et al Adult stress promotes purinergic signaling to induce visceral pain in rats with neonatal maternal deprivation. Neurosci Bull. 2020; 36 (11):1271–1280. doi: 10.1007/s12264-020-00575-7. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
41. BORTOLATO M, YARDLEY M M, KHOJA S, et al Pharmacological insights into the role of P2X4 receptors in behavioural regulation: lessons from ivermectin. Int J Neuropsychopharmacol. 2013; 16 (5):1059–1070. doi: 10.1017/S1461145712000909. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
42. LI L, ZOU Y, LIU B, et al Contribution of the P2X4 receptor in rat hippocampus to the comorbidity of chronic pain and depression. ACS Chem Neurosci. 2020; 11 (24):4387–4397. doi: 10.1021/acschemneuro.0c00623. [ PubMed ] [ CrossRef ] [ Google Scholar ]
43. VERMA R, CRONIN C G, HUDOBENKO J, et al Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav Immun. 2017; 66 :302–312. doi: 10.1016/j.bbi.2017.07.155. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
44. KITTNER H, FRANKE H, FISCHER W, et al Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology. 2003; 28 (3):435–444. doi: 10.1038/sj.npp.1300043. [ PubMed ] [ CrossRef ] [ Google Scholar ]
45. WAWRZYNIAK A J, DILSIZIAN V, KRANTZ D S, et al High concordance between mental stress-induced and adenosine-induced myocardial ischemia assessed using SPECT in heart failure patients: hemodynamic and biomarker correlates. J Nucl Med. 2015; 56 (10):1527–1533. doi: 10.2967/jnumed.115.157990. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
46. GOMES C V, KASTER M P, TOMÉ A R, et al Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta. 2011; 1808 (5):1380–1399. doi: 10.1016/j.bbamem.2010.12.001. [ PubMed ] [ CrossRef ] [ Google Scholar ]
47. LI Y, LI L, WU J, et al. Activation of astrocytes in hippocampus decreases fear memory through adenosine A1 receptors. Elife, 2020, 9: e57155[2020-12-28]. https://elifesciences.org/articles/57155. doi: 10.7554/eLife.57155.
48. PASMAN W J, BOESSEN R, DONNER Y, et al. Effect of caffeine on attention and alertness measured in a home-setting, using web-based cognition tests. JMIR Res Protoc, 2017, 6(9): e169[2020-12-28]. https://www.researchprotocols.org/2017/9/e169/. doi: 10.2196/resprot.6727.
49. LEEM Y H, JANG J H, PARK J S, et al Exercise exerts an anxiolytic effect against repeated restraint stress through 5-HT 2A -mediated suppression of the adenosine A 2A receptor in the basolateral amygdala . Psychoneuroendocrinology. 2019; 108 :182–189. doi: 10.1016/j.psyneuen.2019.06.005. [ PubMed ] [ CrossRef ] [ Google Scholar ]
50. OLIVEIRA L, COSTA A C, NORONHA-MATOS J B, et al Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A 2A receptors and redistribution of synaptic vesicles . Neuropharmacology. 2015; 89 :64–76. doi: 10.1016/j.neuropharm.2014.09.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
51. PINHEIRO H, GASPAR R, BAPTISTA F I, et al. Adenosine A2A receptor blockade modulates glucocorticoid-induced morphological alterations in axons, but not in dendrites, of hippocampal neurons. Front Pharmacol, 2018, 9: 219[2020-12-28]. https://doi.org/10.3389/fphar.2018.00219.
52. BLACKER C J, MILLISCHER V, WEBB L M, et al EAAT2 as a research target in bipolar disorder and unipolar depression: a systematic review. Mol Neuropsychiatry. 2020; 5 (Suppl 1):44–59. doi: 10.1159/000501885. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
53. MATOS M, SHEN H Y, AUGUSTO E, et al Deletion of adenosine A 2A receptors from astrocytes disrupts glutamate homeostasis leading to psychomotor and cognitive impairment: relevance to schizophrenia . Biol Psychiatry. 2015; 78 (11):763–774. doi: 10.1016/j.biopsych.2015.02.026. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
54. SERCHOV T, SCHWARZ I, THEISS A, et al. Enhanced adenosine A1 receptor and homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology, 2020, 162: 107834[2020-12-28]. doi: 10.1016/j.neuropharm.2019.107834.
55. SERCHOV T, CLEMENT H W, SCHWARZ M K, et al Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive-like behavior via induction of homer1a. Neuron. 2015; 87 (3):549–562. doi: 10.1016/j.neuron.2015.07.010. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
56. FUENTES E, PALOMO I Extracellular ATP metabolism on vascular endothelial cells: a pathway with pro-thrombotic and anti-thrombotic molecules. Vascul Pharmacol. 2015; 75 :1–6. doi: 10.1016/j.vph.2015.05.002. [ PubMed ] [ CrossRef ] [ Google Scholar ]
57. VILLANUEVA-CASTILLO B, RIVERA-MANCILLA E, HAANES K A, et al The role of purinergic P2Y 12 and P2Y 13 receptors in ADPβS-induced inhibition of the cardioaccelerator sympathetic drive in pithed rats . Purinerg Signal. 2020; 16 (1):73–84. doi: 10.1007/s11302-020-09689-z. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
58. ZHONG J, AMINA S, LIANG M, et al. Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice. Front Neurosci, 2016, 10: 304[2020-12-28]. https://doi.org/10.3389/fnins.2016.00304.
59. BURNSTOCK G Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov. 2008; 7 (7):575–590. doi: 10.1038/nrd2605. [ PubMed ] [ CrossRef ] [ Google Scholar ]
60. PENG W, WU Z, SONG K, et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science, 2020, 369(6508): eabb0556[2020-12-28]. https://science.sciencemag.org/content/369/6508/eabb0556.long. doi: 10.1126/science.abb0556.
61. CIEŚLAK M, CZARNECKA J, ROSZEK K The roles of purinergic signaling in psychiatric disorders. Acta Biochim Pol. 2016; 63 (1):1–9. doi: 10.18388/abp.2015_1004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
62. BURNSTOCK G The therapeutic potential of purinergic signalling. Biochem Pharmacol. 2018; 151 :157–165. doi: 10.1016/j.bcp.2017.07.016. [ PubMed ] [ CrossRef ] [ Google Scholar ]
63. CHEN J F, CUNHA R A The belated US FDA approval of the adenosine A 2A receptor antagonist istradefylline for treatment of Parkinson's disease . Purinerg Signal. 2020; 16 (2):167–174. doi: 10.1007/s11302-020-09694-2. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Sichuan University (Medical Sciences) are provided here courtesy of Editorial Board of Journal of Sichuan University (Medical Sciences)