Records 源码阅读与实践
简介
Records 是用于对大多数关系型数据库进行原始的 SQL 语句查询的第三方库,由 kennethreitz 创建,目前仅 500 多行代码,非常简单但又十分强大。它支持的数据库有 RedShift, Postgres, MySQL, SQLite, Oracle, and MS-SQL 。
Records 开源地址: https:// github.com/kennethreitz /records
SQL for Humans™ https:// pypi.python.org/pypi/re cords/
records.py
以下是按照源代码顺序进行的阅读记录,如有错误,欢迎指正!
# -*- coding: utf-8 -*-
PEP 0263 :建议在Python文件头部声明使用何种编码
import
import os
# 用于处理文件和目录
from sys import stdout
# Python 默认输出
from collections import OrderedDict
# OrderedDict 有序字典,根据元素放入先后顺序排列
from contextlib import contextmanager
# 上下文管理器
from inspect import isclass
# isclass 判断是否为类对象
import tablib
# 将数据输出为常用格式的第三方库
from docopt import docopt
# 解析命令行参数
from sqlalchemy import create_engine, exc, inspect, text
# sqlalchemy 提供 SQL 工具和 ORM 工具
什么是ORM?
全称 Object-Relationl Mapping,在Python中表现为关系型数据库的对象和Python对象之间的映射,有了这个映射,我们就可以直接通过调用Python对象来操作数据库。
isexception 方法
# isexception 判断对象是否为Exception类实例或其子类
def isexception(obj):
"""Given an object, return a boolean indicating whether it is an instance
or subclass of :py:class:`Exception`.
if isinstance(obj, Exception):
return True
if isclass(obj) and issubclass(obj, Exception):
return True
return False
Record 类
# Record 储存单行数据的类
class Record(object):
"""A row, from a query, from a database."""
__slots__ = ('_keys', '_values') # 限制类的合法属性集(仅对新式类作用)
def __init__(self, keys, values):
self._keys = keys # 单下划线保护变量
self._values = values
# Ensure that lengths match properly.
# assert 断言,表达式返回为False则报错,此处为确保 _keys _values 长度一致
assert len(self._keys) == len(self._values)
# keys 和 values 都是 getter 方法,是用于获取保护变量值的函数
def keys(self):
"""Returns the list of column names from the query."""
return self._keys
def values(self):
"""Returns the list of values from the query."""
return self._values
# __repr__ 定义对象在终端返回的字符串形式
def __repr__(self):
return '<Record {}>'.format(self.export('json')[1:-1])
# __getitem__ 定义 obj[key] 索引返回值
def __getitem__(self, key):
# Support for index-based lookup.
# 整数索引支持
if isinstance(key, int): # 如果 key 为整数类型
return self.values()[key]
# Support for string-based lookup.
# 字符索引支持
if key in self.keys(): # 如果 key 为 keys属性中的值
i = self.keys().index(key) # 返回该 key 的位置
if self.keys().count(key) > 1: # 如果 key 在 keys 属性中有多值
raise KeyError("Record contains multiple '{}' fields.".format(key))
return self.values()[i]
raise KeyError("Record contains no '{}' field.".format(key))
# __getattr__ 属性查找,定义 obj.key 返回值
def __getattr__(self, key):
try:
return self[key]
except KeyError as e:
raise AttributeError(e)
# __dir__ 定义 obj 属性信息,通过 dir(obj) 调用返回
def __dir__(self):
standard = dir(super(Record, self))
# Merge standard attrs with generated ones (from column names).
return sorted(standard + [str(k) for k in self.keys()])
# get 实现类似于字典的 get 方法,若找不到值则返回默认值
def get(self, key, default=None):
"""Returns the value for a given key, or default."""
try:
return self[key]
except KeyError:
return default
# as_dict 生成字典,ordered 控制是否返回有序字典
def as_dict(self, ordered=False):
"""Returns the row as a dictionary, as ordered."""
items = zip(self.keys(), self.values())
return OrderedDict(items) if ordered else dict(items)
# @property 装饰器,将函数调用方式改为属性调用方式(obj.dataset)
# dataset 将 keys 和 values 放入 tablib 的 Dataset 对象
@property
def dataset(self):
"""A Tablib Dataset containing the row."""
data = tablib.Dataset()
data.headers = self.keys()
# _reduce_datetimes 在后面有定义,若 values 为 datetime 类型则转换为字符串
row = _reduce_datetimes(self.values())
data.append(row)
return data
# export 调用Dataset对象的export方法输出指定格式数据
def export(self, format, **kwargs):
"""Exports the row to the given format."""
return self.dataset.export(format, **kwargs)
Record 对象储存的是单条记录,keys 负责储存列名,values 负责储存每列对应的值,支持通过整数、字符串、get 方法索引,可以通过 tablib 导出为指定格式数据。
RecordCollection 类
# RecordCollection 存储多行数据的类
class RecordCollection(object):
"""A set of excellent Records from a query."""
def __init__(self, rows):
self._rows = rows
self._all_rows = [] # 用于缓存已迭代过的行
self.pending = True
def __repr__(self):
return '<RecordCollection size={} pending={}>'.format(len(self), self.pending)
# __iter__ 实现迭代能力(Iterable),yield 返回值
def __iter__(self):
"""Iterate over all rows, consuming the underlying generator
only when necessary."""
i = 0
while True:
# Other code may have iterated between yields,
# so always check the cache.
# 首先从缓存中查找(len 返回值为 _all_rows 长度),然后进行迭代
if i < len(self):
yield self[i]
else:
# Throws StopIteration when done.
# Prevent StopIteration bubbling from generator, following https://www.python.org/dev/peps/pep-0479/
try:
yield next(self)
except StopIteration:
return
i += 1
# next 提供显示调用 __next__ 能力
def next(self):
return self.__next__()
# __next__ 此处同时实现了 __iter__ 和 __next__ ,说明该类的对象为迭代器(Iterator)
def __next__(self):
try:
nextrow = next(self._rows) # next() Python 内置迭代器方法
self._all_rows.append(nextrow) # 将每次迭代的行缓存到_all_rows属性
return nextrow
except StopIteration:
self.pending = False
raise StopIteration('RecordCollection contains no more rows.')
# __getitem__ 定义类的索引返回值,[]的索引只有int、slice两种类型
# 此处与 Record 类的实现有所不同,主要针对切片操作进行了优化
def __getitem__(self, key):
is_int = isinstance(key, int)
# Convert RecordCollection[1] into slice.
if is_int:
key = slice(key, key + 1) # 整数索引转换为切片对象
while len(self) < key.stop or key.stop is None: # 若索引大于缓存的长度或索引无结束位置,则进行迭代
try:
next(self)
except StopIteration:
break
rows = self._all_rows[key] # 从缓存中提取索引指定行
# 若传入 key 为 int 则返回行,否则返回一个包含多行的 RecordCollection 对象
if is_int:
return rows[0]
else:
return RecordCollection(iter(rows))
# __len__ 定义len(obj)的返回值,此处为_all_rows长度
def __len__(self):
return len(self._all_rows)
# export 导出指定格式数据集
def export(self, format, **kwargs):
"""Export the RecordCollection to a given format (courtesy of Tablib)."""
return self.dataset.export(format, **kwargs)
# dataset 存放记录到 Dataset 对象并返回(支持属性调用访问)
@property
def dataset(self):
"""A Tablib Dataset representation of the RecordCollection."""
# Create a new Tablib Dataset.
data = tablib.Dataset()
# If the RecordCollection is empty, just return the empty set
# Check number of rows by typecasting to list
# 如果传入对象长度为空,则返回空 Dataset
if len(list(self)) == 0:
return data
# Set the column names as headers on Tablib Dataset.
# 设定 Dataset 对象的表头名
first = self[0]
data.headers = first.keys()
for row in self.all():
row = _reduce_datetimes(row.values())
data.append(row)
return data
# all 返回所有记录,可指定列表、字典、有序字典形式
def all(self, as_dict=False, as_ordereddict=False):
"""Returns a list of all rows for the RecordCollection. If they haven't
been fetched yet, consume the iterator and cache the results."""
# By calling list it calls the __iter__ method
# list(self) 调用了类的 __iter__ 方法
rows = list(self)
if as_dict:
return [r.as_dict() for r in rows]
elif as_ordereddict:
return [r.as_dict(ordered=True) for r in rows]
return rows
# as_dict 返回所有记录的字典形式(调用 all 方法)
def as_dict(self, ordered=False):
return self.all(as_dict=not(ordered), as_ordereddict=ordered)
# first 返回 RecordCollection 对象的第一条记录
def first(self, default=None, as_dict=False, as_ordereddict=False):
"""Returns a single record for the RecordCollection, or `default`. If
`default` is an instance or subclass of Exception, then raise it
instead of returning it."""
# Try to get a record, or return/raise default.
# 尝试获得第一条记录,否则返回默认值或报默认
try:
record = self[0] # 调用 __getitem__ 获取_all_rows中的第一个元素
except IndexError:
if isexception(default): # isexception 全局方法
raise default
return default
# Cast and return.
if as_dict:
return record.as_dict()
elif as_ordereddict:
return record.as_dict(ordered=True)
else:
return record
# one 返回仅含一条记录的 RecordCollection 对象的记录,不满足则报错
def one(self, default=None, as_dict=False, as_ordereddict=False):
"""Returns a single record for the RecordCollection, ensuring that it
is the only record, or returns `default`. If `default` is an instance
or subclass of Exception, then raise it instead of returning it."""
# Ensure that we don't have more than one row.
try:
self[1]
except IndexError: # 如果没有第二条元素则返回第一条元素
return self.first(default=default, as_dict=as_dict, as_ordereddict=as_ordereddict)
else: # 如果有第二条元素则报错
raise ValueError('RecordCollection contained more than one row. ''
'Expects only one row when using '
'RecordCollection.one')
# scalar 返回满足 one 条件记录的第一列元素
def scalar(self, default=None):
"""Returns the first column of the first row, or `default`."""
row = self.one()
return row[0] if row else default
RecordsCollection 对象是 Records 查询返回的对象,是一个包含多行结果的迭代器,迭代器最大的好处在于节约内存空间,而对象的索引也是通过迭代返回结果,索引结果会缓存起来,再次索引可以直接从缓存中查找,大大减少了平均索引速度。
Database 类
# Database 用于数据库连接和 SQL 查询的类
class Database(object):
"""A Database. Encapsulates a url and an SQLAlchemy engine with a pool of
connections.
def __init__(self, db_url=None, **kwargs):
# If no db_url was provided, fallback to $DATABASE_URL.
# 如果不提供 db_url 则从环境变量中寻找
self.db_url = db_url or os.environ.get('DATABASE_URL')
# 如果找不到 db_url 则报错
if not self.db_url:
raise ValueError('You must provide a db_url.')
# Create an engine.
# 建立数据库连接
self._engine = create_engine(self.db_url, **kwargs)
self.open = True
# close 关闭引擎
def close(self):
"""Closes the Database."""
self._engine.dispose()
self.open = False
# with 语句支持
# __enter__ 该方法返回值将赋值给 as 后的变量
def __enter__(self):
return self
# __exit__ 在 with 语句代码块执行完后调用
def __exit__(self, exc, val, traceback):
self.close()
def __repr__(self):
return '<Database open={}>'.format(self.open)
# get_table_names 返回包含已连接数据库中所有表名的列表
def get_table_names(self, internal=False):
"""Returns a list of table names for the connected database."""
# Setup SQLAlchemy for Database inspection.
return inspect(self._engine).get_table_names()
# get_connection 获取并返回数据库连接对象 Connection(见 Connection 类)
def get_connection(self):
"""Get a connection to this Database. Connections are retrieved from a
pool.
# 如果引擎关闭则报错
if not self.open:
raise exc.ResourceClosedError('Database closed.')
return Connection(self._engine.connect())
# 以下四个函数均通过 Connection 对象执行(见 Connection 中定义)
def query(self, query, fetchall=False, **params):
"""Executes the given SQL query against the Database. Parameters can,
optionally, be provided. Returns a RecordCollection, which can be
iterated over to get result rows as dictionaries.
with self.get_connection() as conn:
return conn.query(query, fetchall, **params)
def bulk_query(self, query, *multiparams):
"""Bulk insert or update."""
with self.get_connection() as conn:
conn.bulk_query(query, *multiparams)
def query_file(self, path, fetchall=False, **params):
"""Like Database.query, but takes a filename to load a query from."""
with self.get_connection() as conn:
return conn.query_file(path, fetchall, **params)
def bulk_query_file(self, path, *multiparams):
"""Like Database.bulk_query, but takes a filename to load a query from."""
with self.get_connection() as conn:
conn.bulk_query_file(path, *multiparams)
# @contextmanager 上下文管理器装饰器,接收一个 generator,用 yield 返回对象为 with ... as var 中的变量
# transaction 用于执行事务操作
@contextmanager
def transaction(self):
"""A context manager for executing a transaction on this Database."""
conn = self.get_connection() # 获取 Connection 对象
tx = conn.transaction() # 获取 Transaction 对象
try:
yield conn
tx.commit()
except:
tx.rollback()
finally:
conn.close()
Database 类是 Records 中主要的操作对象,可以通过调用 Database 完成数据库的连接、获取所有表名、SQL 语句执行、事务操作。
1.数据库连接 ,直接调用了 sqlalchemy 的连接方式,通过传入 Database URL 完成数据库连接。
一个典型的 Database URL 格式为:dialect+driver://username:password@host:port/database
Python 通过 PyMySQL 调用 MySQL:mysql+pymysql://scott:tiger@localhost/foo
2.获取表名 ,调用了 sqlalchemy 的 inspect 方法获取
3.SQL 语句执行 ,主要功能的实现定义在 Connection 类,此处主要通过 with 语句调用。
4.事务操作 , SQL 中事务的主要操作有 BEGIN 、COMMIT 、ROLLBACK,而 Python 上下文管理器的特点是,可以控制语句块执行前后的动作,此处上下文管理器执行前获取 Connection 和 Transaction 对象,执行完毕后通过 try ... except ... finally 语句分别对语句块 执行成功、执行失败、执行结束 三种情况的 Transaction 动作进行了定义。优点是大大简化了事务操作流程,用户只需关注 SQL 语句的书写,这也反映了作者创建此包的初衷,“Just write SQL. No bells, no whistles. ”
Connection 类
# Connection 数据库连接对象
class Connection(object):
"""A Database connection."""
def __init__(self, connection):
self._conn = connection # self._engine.connect()
self.open = not connection.closed
# close 关闭连接
def close(self):
self._conn.close()
self.open = False
# with 语句支持(__enter__ 、 __exit__)
def __enter__(self):
return self
def __exit__(self, exc, val, traceback):
self.close()
def __repr__(self):
return '<Connection open={}>'.format(self.open)
# query 执行 SQL 语句
def query(self, query, fetchall=False, **params):
"""Executes the given SQL query against the connected Database.
Parameters can, optionally, be provided. Returns a RecordCollection,
which can be iterated over to get result rows as dictionaries.
# Execute the given query.
# 执行给定语句
# text() 在此处的作用是将 SQL 语句格式化,使其能够通过外部参数动态调整
# **params 可变关键字参数,以字典形式传入
cursor = self._conn.execute(text(query), **params) # TODO: PARAMS GO HERE
# Row-by-row Record generator.
# cursor 是 sqlalchemy 中的 ResultProxy 对象
# cursor.keys() 获取列名
# row_gen 是包含多个 Record 对象的迭代器
row_gen = (Record(cursor.keys(), row) for row in cursor)
# Convert psycopg2 results to RecordCollection.
# 将结果存入 RecordCollection 对象
results = RecordCollection(row_gen)
# Fetch all results if desired.
# fetchall=True 获取所有结果
if fetchall:
results.all()
return results
# bulk_query 批量执行 SQL 语句
def bulk_query(self, query, *multiparams):
"""Bulk insert or update."""
# *multiparams 可变参数,以元组形式传入
self._conn.execute(text(query), *multiparams)
# query_file 从 .sql 文件中执行
def query_file(self, path, fetchall=False, **params):
"""Like Connection.query, but takes a filename to load a query from."""
# If path doesn't exists
if not os.path.exists(path):
raise IOError("File '{}' not found!".format(path))
# If it's a directory
if os.path.isdir(path):
raise IOError("'{}' is a directory!".format(path))
# Read the given .sql file into memory.
with open(path) as f:
query = f.read()
# Defer processing to self.query method.
return self.query(query=query, fetchall=fetchall, **params)
# bulk_query_file 从 .sql 文件中批量执行
def bulk_query_file(self, path, *multiparams):
"""Like Connection.bulk_query, but takes a filename to load a query
from.
# If path doesn't exists
if not os.path.exists(path):
raise IOError("File '{}'' not found!".format(path))
# If it's a directory
if os.path.isdir(path):
raise IOError("'{}' is a directory!".format(path))
# Read the given .sql file into memory.
with open(path) as f:
query = f.read()
self._conn.execute(text(query), *multiparams)
# transaction 返回一个 Transaction 事务对象,可调用 commit 或 rollback
def transaction(self):
"""Returns a transaction object. Call ``commit`` or ``rollback``
on the returned object as appropriate."""
return self._conn.begin()
不难看出,Connection 主要实现的功能有 contextmanager 上下文管理器、query 返回 SQL 语句结果、transaction 返回事务对象。
- contextmanager 的实现使得连接可以通过 with 语句完成,确保 SQL 语句执行结束后及时关闭 Connection;
- query 主要完成了三个步骤,第一步提取 sqlalchemy 查询得到的 ResultProxy 对象,第二步将每条数据封装入 Records 对象,第三步将每条 Records 封装入 RecordsCollection 对象;
- transaction 返回了 sqlalchemy 的 Transaction 对象,此对象在 Database 类中发挥作用。
_reduce_datetimes 方法
# _reduce_datetimes 接收一行,将 datetimes 格式转换为ISO格式的时间字符串
def _reduce_datetimes(row):
"""Receives a row, converts datetimes to strings."""
row = list(row)
# 通过索引修改
for i in range(len(row)):
if hasattr(row[i], 'isoformat'):
row[i] = row[i].isoformat()
return tuple(row)
cli 方法
# cli 命令行界面(command line interface)
def cli():
supported_formats = 'csv tsv json yaml html xls xlsx dbf latex ods'.split()
formats_lst=", ".join(supported_formats)
cli_docs ="""Records: SQL for Humans™
A Kenneth Reitz project.
Usage:
records <query> [<format>] [<params>...] [--url=<url>]
records (-h | --help)
Options:
-h --help Show this screen.
--url=<url> The database URL to use. Defaults to $DATABASE_URL.
Supported Formats:
%(formats_lst)s
Note: xls, xlsx, dbf, and ods formats are binary, and should only be
used with redirected output e.g. '$ records sql xls > sql.xls'.
Query Parameters:
Query parameters can be specified in key=value format, and injected
into your query in :key format e.g.:
$ records 'select * from repos where language ~= :lang' lang=python
Notes:
- While you may specify a database connection string with --url, records
will automatically default to the value of $DATABASE_URL, if available.
- Query is intended to be the path of a SQL file, however a query string
can be provided instead. Use this feature discernfully; it's dangerous.
- Records is intended for report-style exports of database queries, and
has not yet been optimized for extremely large data dumps.
""" % dict(formats_lst=formats_lst)
# Parse the command-line arguments.
arguments = docopt(cli_docs)
query = arguments['<query>']
params = arguments['<params>']
format = arguments.get('<format>')
if format and "=" in format:
del arguments['<format>']
arguments['<params>'].append(format)
format = None
if format and format not in supported_formats:
print('%s format not supported.' % format)
print('Supported formats are %s.' % formats_lst)
exit(62)
# Can't send an empty list if params aren't expected.
try:
params = dict([i.split('=') for i in params])
except ValueError:
print('Parameters must be given in key=value format.')
exit(64)
# Be ready to fail on missing packages
try:
# Create the Database.
db = Database(arguments['--url'])
# Execute the query, if it is a found file.
if os.path.isfile(query):
rows = db.query_file(query, **params)
# Execute the query, if it appears to be a query string.
elif len(query.split()) > 2:
rows = db.query(query, **params)
# Otherwise, say the file wasn't found.
else:
print('The given query could not be found.')
exit(66)
# Print results in desired format.
if format:
content = rows.export(format)
if isinstance(content, bytes):
print_bytes(content)
else:
print(content)
else:
print(rows.dataset)
except ImportError as impexc:
print(impexc.msg)
print("Used database or format require a package, which is missing.")
print("Try to install missing packages.")
exit(60)
print_bytes 方法
# print_bytes 打印输出二进制对象
def print_bytes(content):
try:
stdout.buffer.write(content)
except AttributeError:
stdout.write(content)
if name == ' main ':
# Run the CLI when executed directly.
# 如果直接运行则启动命令行界面
if __name__ == '__main__':
cli()
实践
安装
$ pip install records
$ pipenv install records[pandas] # 推荐安装方式
执行语句
import records
# 获取数据库
db = records.Database('mysql+pymysql://root:@localhost:3306/dev01_git')
rows = db.query('select * from pc_user')
创建表
# 连接数据库
db = records.Database('mysql+pymysql://root:@localhost:3306/dev01_git')
# 创建表
sql_create_table = """CREATE TABLE IF NOT EXISTS pc_user (
name varchar(20),
age int
) DEFAULT CHARSET=utf8 ;"""
db.query(sql_create_table)
插入数据
# 插入单条
user = {"name": "zhang1", "age": 13}
db.query('INSERT INTO pc_user(name,age) values (:name, :age)', **user)
# 插入多条
users = [
{"name":"zhang2", "age": 14},
{"name":"zhang3", "age": 15},
{"name":"zhang4", "age": 16}
db.bulk_query('INSERT INTO pc_user(name,age) values (:name, :age)', users)
查询数据
rows = db.query('SELECT * FROM pc_user;')
# 查询所有数据
print(rows.all())
# 字典形式展示
print(rows.all(as_dict=True))
# 获取第一条记录
print(rows.first())
# 以字典形式获取第一条记录
print(rows.first(as_dict=True))
# 顺序字典
print(rows.first(as_ordereddict=True))
# 查询唯一的一个
print(rows.one())
数据库事务操作
with db.transaction() as tx:
user = {"name": "zhang5", "age": 20}
tx.query('INSERT INTO pc_user(name,age) values (:name, :age)', **user)
tx.query('sof') # 错误语句,自动回滚
数据导出
# 导出为json
rows = db.query('SELECT * FROM pc_user;')
json_rows = rows.export('yaml')