但在此之前,你应该知道一些理论。

频率 :频率是正弦波重复一秒的次数。我将使用1KHz的频率。

采样率 :大多数现实世界的信号是模拟的,而计算机是数字的。因此,我们需要一个模数转换器将模拟信号转换为数字信号。有关转换器如何工作的详细信息超出了本书的范围。关键是采样率,即转换器每秒采样模拟信号的次数。

现在,采样率对我们来说并不重要,因为我们正在以数字方式完成所有工作,但我们的正弦波公式需要它。我将使用48000的采样率值,这是专业音频设备中使用的值。
正弦波公式 :公式如下。

y(t)= A * sin(2 * pi * f *t)

y(t) 是对于某个 x 轴 时间 t , y 轴的值

A 是幅值

pi 是我们的老朋友 3.14159.

f 是频率.

t 是样本. 由于我们需要将其转换为数字,我们将按采样率进行划分。

关于幅值:

上述的幅值A。在大多数书中,他们只选择A的随机值,通常为1.但我们这里不能这么取。我们生成的正弦波将处于浮点状态,虽然这对于绘制图形来说已经足够了,但是当我们写入文件时这将无法工作。原因是我们需要处理整数。如果查看wave文件,它们将被写为16位短整数。如果我们写一个浮点数,它将无法正确被表示。

为了解决这个问题,我们必须将浮点数转换为固定值。其中一种方法是将其乘以固定常数。我们如何计算这个常数?带符号的16位数的最大值是32767(2 ^ 15-1)。 (因为最左边的位是为符号保留的,留下15位。我们将2增加到15的幂,然后减去1,因为计算机从0开始计数)。

所以我们想要全音阶音频,我们将它与32767相乘。但我想要的音频信号是满量程的一半,所以我将使用16000的幅度。

代码如下:

import numpy as np
import wave
import struct
import matplotlib.pyplot as plt
# frequency is the number of times a wave repeats a second
frequency = 1000
num_samples = 48000
# The sampling rate of the analog to digital convert
sampling_rate = 48000.0
amplitude = 16000
file = "test.wav"

设置我们刚才声明过的波形变量:

sine_wave = [np.sin(2 * np.pi * frequency * x/sampling_rate) for x in range(num_samples)]

它表示生成0到num_samples范围内的 x,并且对于每个x值,生成一个值为该值的值。你可以将此值视为y轴值。然后将所有这些值放入列表中。十分简单。

nframes=num_samples
comptype="NONE"
compname="not compressed"
nchannels=1
sampwidth=2

好的,现在是时候将正弦波写入文件了。我们将使用Python的内置wave库。在这里我们设置参数。 nframes是帧数或样本数。

comptypecompname都表示同样的事情:数据未压缩。 nchannels是通道数,即1. sampwidth是以字节为单位的样本宽度。正如我前面提到的,波形文件通常是每个样本16位或2个字节。

wav_file=wave.open(file, 'w')
wav_file.setparams((nchannels, sampwidth, int(sampling_rate), nframes, comptype, compname))

打开波形文件并且设置参数:

for s in sine_wave:
   wav_file.writeframes(struct.pack('h', int(s*amplitude)))

这里可能需要解释一下。我们正在按样本写sine_wave文件。writeframes是写正弦波的函数。一切都很简单。可能让你感到困惑的是下面这一行:

struct.pack('h', int(s*amplitude))

分解上述句子:

int(s*amplitude)

s 是我们正在写的sine_wave的单个样本。我将它与此处的幅度相乘(转换为固定点)。放在这里处理的原因是写入文件时需要转化为整数处理。

现在,我们拥有的数据只是一个数字列表。如果我们将其写入文件,音频播放器将无法读取。

Struct是一个Python库,它接收我们的数据并将其打包为二进制数据。代码中的h表示16位数。

要了解这个包的作用,让我们看看IPython中的一个例子。

In [1]: import numpy as np
In [2]: np.sin(0.5)
Out[2]: 0.47942553860420301
In [5]: 0.479*16000
Out[5]: 7664.0

上面是以0.5为例。

因此我们取0.5的sin,并将其乘以16000将其转换为固定点数。现在如果我们将其写入文件,它只会将7664写为字符串,这是错误的。让我们看一下struct做了什么:

In [6]: struct.pack('h', 7664)
Out[6]: 'xf0x1d'

x 表示数字是十六进制。如你所见,struct已将我们的数字7664转换为2个十六进制值:0xf0和0x1d。

为什么是0xf0 0x1d?好吧,如果你将7664转换为十六进制,你将获得0xf01d。
为什么两个值?因为我们使用的是16位值,而且我们的数字不能合二为一。因此,struct将其分为两个数字。

由于数字现在是十六进制,因此其他程序可以读取它们,包括我们的音频播放器。

回到我们的代码:

for s in sine_wave:
   wav_file.writeframes(struct.pack('h', int(s*amplitude)))

这将采用我们的正弦波样本并将其写入我们的文件test.wav,打包为16位音频。

在你拥有的任何音频播放器中播放文件 - Windows Media Player,VLC等。你应该能听到非常短的蜂鸣。

现在,我们需要检查音调的频率是否正确。我将使用Audacity,一个具有大量功能的开源音频播放器。其中之一就是我们可以找到音频文件的频率。让我们打开Audacity。

我们得到了一个正弦波。请注意,波形高达0.5,而1.0是最大值。还记得我们乘以16000,这是36767的一半。

现在找频率。转到编辑 - >全选(或按Ctrl A),然后选择分析 - >频谱分析。

可以看到峰值大约为1000 Hz,这就是我们创建波形文件的方式。

2. 计算正弦波的频率

我在我的学位课程中参加了一门信号处理课程,并且不了解任何事情。我们被要求解一百个方程式,没有任何意义或逻辑。我发现这个主题很无聊和迂腐。

当我不得不再为我的硕士学习时,我不高兴。但我很幸运。

这次,老师是一名执业工程师。他经营自己的公司并兼职教学。与大学教师不同,他实际上知道方程式的用途。

但是这位老师(我忘了他的名字,他是一个丹麦人)向我们展示了一个嘈杂的信号,并且使用了DFT。然后他在图形窗口中显示结果。我们清楚地看到了原始的正弦波和噪声频率,我第一次理解了DFT的作用。

使用 DFT 获取频率

要获得正弦波的频率,你需要获得其离散傅立叶变换(DFT)。你不需要了解如何推导变换。你只需要知道如何使用它。

最简单的说,DFT接收信号并计算其中存在哪些频率。在更多技术术语中,DFT将时域信号转换为频域。那是什么意思?让我们来看看我们的正弦波。

波形随着时间而变化。如果这是一个音频文件,你可以想象播放器在文件播放时向右移动。

在频域中,你可以看到信号的频率部分。此图片将从本章后面的内容中获取,以显示频域的外观:

如果添加或删除频率,信号将发生变化,但不会及时更改。例如,如果你采用1000 Hz的音频并采用其频率,无论你看多长时间,频率都将保持不变。但是如果你在时域中看它,你会看到信号在移动。

DFT在计算机上运行得很慢(早在70年代),因此发明了快速傅里叶变换(FFT)。 FFT如今被广泛使用。

它的工作方式是,接收信号并在其上运行FFT,然后你会得到信号的频率。

如果你从未使用过(甚至没有听过)FFT,请不要担心。我将教你如何开始使用它,如果你愿意,你可以在线阅读更多内容。无论如何,大多数教程或书籍都不会教你太多。他们通常会用公式来轰炸你,而不会告诉你如何处理它们。

frame_rate = 48000.0
infile = "test.wav"
num_samples = 48000
wav_file = wave.open(infile, 'r')
data = wav_file.readframes(num_samples)
wav_file.close()

我们正在读取我们在上一个例子中生成的wave文件。这段代码应该足够清楚。wave.readframes()函数从wave文件中读取所有音频帧。

data = struct.unpack('{n}h'.format(n=num_samples), data)

还记得我们必须打包数据以使其以二进制格式可读吗?好吧,我们现在正好相反。该函数的第一个参数是格式字符。告诉解包器按照num_samples 16位字来解压缩文件(记住h表示16位)。

data = np.array(data)

然后我们将数据转换为numpy数组。

data_fft = np.fft.fft(data)

我们接受数据的fft。这将创建一个包含信号中所有频率的阵列。

现在,这里就是问题所在。 fft返回一个复数的数组,不告诉我们任何东西。如果我打印出fft的前8个值,会得到:

In [3]: data_fft[:8]
Out[3]:
array([ 13.00000000 +0.j        ,   8.44107682 -4.55121351j,
6.24696630-11.98027552j,   4.09513760 -2.63009999j,
-0.87934285 +9.52378503j,   2.62608334 +3.58733642j,
4.89671762 -3.36196984j,  -1.26176048 +3.0234555j ])

Numpy 可以将复数转换为实数值。

# This will give us the frequency we want
frequencies = np.abs(data_fft)

numpy abs()函数将获取我们的复数信号并生成它的实数值。

稍微解释一下FFT如何返回其结果。

FFT返回信号中所有可能的频率。它返回的方式是每个索引包含一个频率元素。假设你将FFT结果存储在名为data_fft的数组中。然后:

data_fft [1]将包含1 Hz的频率部分。

data_fft [2]将包含2 Hz的频率部分。

data_fft [8]将包含8 Hz的频率部分。

data_fft [1000]将包含1000 Hz的频率部分。

现在如果你的信号中没有1Hz频率怎么办?你仍然可以在data_fft [1]获得一个值,但它将是微不足道的。举个例子,我们来看看1000 Hz波的实际fft:

data_fft = np.fft.fft(sine_wave)
abs(data_fft[0])
Out[7]: 8.1289678326462086e-13
abs(data_fft[1])
Out[8]: 9.9475299243014428e-12
abs(data_fft[1000])
Out[11]: 24000.0

如果你查看data_fft [0]data_fft [1]的绝对值,你会发现它们很小。最后的e-12意味着它们被提升到-12的幂,所以对于data_fft [0]来说就像0.00000000000812。但是如果你看一下data_fft [1000],那么这个值就是24000.这可以很容易地绘制出来。

如果我们想要找到具有最高值的数组元素,我们可以通过以下方式找到它:

print("The frequency is {} Hz".format(np.argmax(frequencies)))

np.argmax将返回信号中的最高频率,然后打印出来。正如我们手动看到的,这是1000Hz(或存储在data_fft [1000]的值)。现在我们也可以绘制数据。

plt.subplot(2,1,1)
plt.plot(data[:300])
plt.title("Original audio wave")
plt.subplot(2,1,2)
plt.plot(frequencies)
plt.title("Frequencies found")
plt.xlim(0,1200)
plt.show()

subplot(2,1,1)意味着我们正在绘制一个2×1网格。第三个数字是图号,是唯一一个会改变的号码。

就是这样。我们获取了音频文件并计算了它的频率。接下来,我们将为我们的情景添加噪音,然后尝试清理它。

3. 简单分离噪声

frequency  = 1000
noisy_freq = 50
num_samples = 48000
sampling_rate = 48000.0

非噪声的频率是1000Hz,我们加入50Hz的噪声。

# Create the sine wave and noise
sine_wave = [np.sin(2*np.pi*frequency*x1/sampling_rate) for x1 in range(num_samples)]
sine_noise = [np.sin(2*np.pi*noisy_freq*x1/sampling_rate) for x1 in range(num_samples)]
# Convert them to numpy arrays
sine_wave = np.array(sine_wave)
sine_noise = np.array(sine_noise)

上面的构建代码和之前的类似。我们生成了两个正弦波,其中是一个信号另一个是噪声,并且我们将他们都转化为了一个numpy的数组

# Add them to create a noisy signal
combined_signal = sine_wave+sine_noise

我把噪声加到了信号里。正如之前提到的,numpy才有这么方便的累加方式。如果是普通的python列表,则需要写一个for循环。总之numpy很方便啦。

把到目前为止得到的信号图像化:

plt.subplot(3,1,1)
plt.title('Original sine wave')
# Need to add empty space, else everything looks scrunched up!
plt.subplots_adjust(hspace=.5)
plt.plot(sine_wave[:500])
plt.subplot(3,1,2)
plt.title('Noise wave')
plt.plot(sine_noise[:4000])
plt.subplot(3,1,3)
plt.title('Original + Noise')
plt.plot(combined_signal[:3000])
plt.show()
data_fft = np.fft.fft(combined_signal)
freq = (np.abs(data_fft[:len(data_fft)]))

data_fft 包含了噪声+信号波的 fft. freq 包含了其中发现的频率的绝对值。

plt.plot(freq)
plt.title('Before filtering: Will have main signal(1000Hz) + noise frequency(50Hz)')
plt.xlim(0,1200)

现在来过滤信号。我不会详细介绍过滤的每个细节(因为那样可能要讲一整本书)。我将使用 fft 来创建一个简单的过滤器。

下面是完整的代码:

filtered_freq = []
index = 0
for f in freq:
    # Filter between lower and upper limits
    # Chooing 950, as closest to 1000. In real world, won't get exact numbers like these
    if index > 950 and index<1050:
        # Has a real value. I'm choosing >1 , as many values are like 0.00000001 etc
        if f>1:
            filtered_freq.append(f)
        else:
            filtered_freq.append(0)
    else:
        filtered_freq.append(0)
    index+=1

上述代码创建一个空列表 filtered_freq。如果你还记得的话, freq 存储了 fft 的绝对值。

index 是数组 freq 当前的索引。正如我说的,fft 返回了信号中所有的频率。
它们基于索引存储在数组中,因此 freq[1] 的频率为1Hz, freq[2] 的频率为2Hz,依此类推。

因为我知道我的目标信号频率是1000Hz,所以我会在这个值附近搜索它。在现实世界中,我们永远不会得到确切的频率,因为噪声意味着一些数据将会丢失。这里使用950的下限和1050的上限,代码检查我们循环的频率是否在这个范围内。

至于嵌套的 if else,同样在前文中有所提及:虽然所有频率都会有值来表示,但它们的绝对值将是微小的,通常小于1.因此,如果我们找到大于1的值,我们将其保存到filtered_freq数组中。

如果我们的频率不在我们正在寻找的范围内,或者如果该值太低,直接0。这是为了删除我们不想要的所有频率。然后我们移动索引到下一这个值。

接下来画出我们滤波后的图像:

plt.plot(filtered_freq)
plt.title('After filtering: Main signal only(1000Hz)')
plt.xlim(0,1200)
plt.show()
plt.close()
recovered_signal = np.fft.ifft(filtered_freq)

现在我们使用 ifft,即 FFT 的逆过程。这将接收我们的信号并将其转换回时域。我们现在可以将它与原始噪声信号进行比较。

plt.subplot(3,1,1)
plt.title("Original sine wave")
# Need to add empty space, else everything looks scrunched up!
plt.subplots_adjust(hspace=.5)
plt.plot(sine_wave[:500])
plt.subplot(3,1,2)
plt.title("Noisy wave")
plt.plot(combined_signal[:4000])
plt.subplot(3,1,3)
plt.title("Sine wave after clean up")
plt.plot((recovered_signal[:500]))
plt.show()

注意我们会看到一个警告:

ComplexWarning: Casting complex values to real discards the imaginary part
return array(a, dtype, copy=False, order=order)

这是因为fft返回一个复数数组。幸运的是,就像警告说的那样,虚部将被丢弃。

怕什么真理无穷,进一寸有一寸的欢喜