它提供了一个标准框架,允许用户从实验或观察数据估计条件平均治疗效果(CATE)或个人治疗效果(ITE)。本质上,它估计了干预T对具有观察到的特征X的用户结果Y的因果影响,而没有对模型形式有很强的假设。

github:https://github.com/uber/causalml

其余两篇开源项目的文章:
因果推断笔记——因果图建模之微软开源的EconML(五)
因果推断笔记——因果图建模之微软开源的dowhy(一)