对于全源最短路径问题(All-Pairs Shortest Paths Problem),可以认为是单源最短路径问题的推广,即分别以每个顶点作为源顶点并求其至其它顶点的最短距离。Johnson 算法描述如下:给定图 G = (V, E),增加一个新的顶点 s,使 s 指向图 G 中的所有顶点都建立连接,设新的图为 G’;对图 G’ 中顶点 s 使用 Bellman-Ford 算法计算单源最短路径,得到结果 h[] = {h[0], h[1], .. h[V-1]};对原图 G 中的所有边进行 "re-weight",即对于每个边 (u, v),其新的权值为 w(u, v) + (h[u] - h[v]);移除新增的顶点 s,对每个顶点运行 Dijkstra 算法求得最短路径;Johnson 算法的运行时间为 O(V2logV + VE)。

解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括:

  • Dijkstra 单源最短路径算法 :时间复杂度为 O(E + VlogV),要求权值非负;
  • Bellman-Ford 单源最短路径算法 :时间复杂度为 O(VE),适用于带负权值情况;
  • 对于全源最短路径问题(All-Pairs Shortest Paths Problem),可以认为是单源最短路径问题的推广,即分别以每个顶点作为源顶点并求其至其它顶点的最短距离。例如,对每个顶点应用 Bellman-Ford 算法 ,则可得到所有顶点间的最短路径的运行时间为 O(V 2 E),由于图中顶点都是连通的,而边的数量可能会比顶点更多,这个时间没有比 Floyd-Warshall 全源最短路径算法 O(V 3 ) 更优。那么,再试下 对每个顶点应用 Dijkstra 算法 ,则可得到所有顶点间的最短路径的运行时间为 O(VE + V 2 logV),看起来优于 Floyd-Warshall 算法的 O(V 3 ),所以看起来使用基于 Dijkstra 算法的改进方案好像更好,但问题是 Dijkstra 算法要求图中所有边的权值非负,不适合通用的情况。

    在 1977 年, Donald B. Johnson 提出了对所有边的权值进行 "re-weight" 的算法,使得边的权值非负,进而可以使用 Dijkstra 算法 进行最短路径的计算。

    我们先自己思考下如何进行 "re-weight" 操作,比如,简单地对每条边的权值加上一个较大的正数,使其非负,是否可行?

       1     1     1
    s-----a-----b-----c
     \              /
       \          /
         \______/
    

    比如上面的图中,共 4 条边,权值分别为 1,1,1,4。当前 s --> c 的最短路径是 {s-a, a-b, b-c} 即 1+1+1=3。而如果将所有边的权值加 1,则最短路径就会变成 {s-c} 的 5,因为 2+2+2=6,实际上导致了最短路径的变化,显然是错误的。

    那么,Johnson 算法是如何对边的权值进行 "re-weight" 的呢?以下面的图 G 为例,有 4 个顶点和 5 条边。

    首先,新增一个源顶点 4,并使其与所有顶点连通,新边赋权值为 0,如下图所示。

    使用 Bellman-Ford 算法 计算新的顶点到所有其它顶点的最短路径,则从 4 至 {0, 1, 2, 3} 的最短路径分别是 {0, -5, -1, 0}。即有 h[] = {0, -5, -1, 0}。当得到这个 h[] 信息后,将新增的顶点 4 移除,然后使用如下公式对所有边的权值进行 "re-weight":

    w(u, v) = w(u, v) + (h[u] - h[v]).

    则可得到下图中的结果:

    此时,所有边的权值已经被 "re-weight" 为非负。此时,就可以利用 Dijkstra 算法对每个顶点分别进行最短路径的计算了。

    Johnson 算法描述如下:

  • 给定图 G = (V, E),增加一个新的顶点 s,使 s 指向图 G 中的所有顶点都建立连接,设新的图为 G’;
  • 对图 G’ 中顶点 s 使用 Bellman-Ford 算法计算单源最短路径,得到结果 h[] = {h[0], h[1], .. h[V-1]};
  • 对原图 G 中的所有边进行 "re-weight",即对于每个边 (u, v),其新的权值为 w(u, v) + (h[u] - h[v]);
  • 移除新增的顶点 s,对每个顶点运行 Dijkstra 算法求得最短路径;
  • Johnson 算法的运行时间为 O(V2logV + VE)。

    Johnson 算法伪码实现如下:

    Johnson 算法 C# 代码实现如下:

      1 using System;
      2 using System.Collections.Generic;
      3 using System.Linq;
      5 namespace GraphAlgorithmTesting
      7   class Program
      9     static void Main(string[] args)
     10     {
     11       // build a directed and negative weighted graph
     12       Graph directedGraph1 = new Graph(5);
     13       directedGraph1.AddEdge(0, 1, -1);
     14       directedGraph1.AddEdge(0, 2, 4);
     15       directedGraph1.AddEdge(1, 2, 3);
     16       directedGraph1.AddEdge(1, 3, 2);
     17       directedGraph1.AddEdge(1, 4, 2);
     18       directedGraph1.AddEdge(3, 2, 5);
     19       directedGraph1.AddEdge(3, 1, 1);
     20       directedGraph1.AddEdge(4, 3, -3);
     22       Console.WriteLine();
     23       Console.WriteLine("Graph Vertex Count : {0}", directedGraph1.VertexCount);
     24       Console.WriteLine("Graph Edge Count : {0}", directedGraph1.EdgeCount);
     25       Console.WriteLine();
     27       int[,] distSet1 = directedGraph1.Johnsons();
     28       PrintSolution(directedGraph1, distSet1);
     30       // build a directed and positive weighted graph
     31       Graph directedGraph2 = new Graph(4);
     32       directedGraph2.AddEdge(0, 1, 5);
     33       directedGraph2.AddEdge(0, 3, 10);
     34       directedGraph2.AddEdge(1, 2, 3);
     35       directedGraph2.AddEdge(2, 3, 1);
     37       Console.WriteLine();
     38       Console.WriteLine("Graph Vertex Count : {0}", directedGraph2.VertexCount);
     39       Console.WriteLine("Graph Edge Count : {0}", directedGraph2.EdgeCount);
     40       Console.WriteLine();
     42       int[,] distSet2 = directedGraph2.Johnsons();
     43       PrintSolution(directedGraph2, distSet2);
     45       Console.ReadKey();
     46     }
     48     private static void PrintSolution(Graph g, int[,] distSet)
     49     {
     50       Console.Write("\t");
     51       for (int i = 0; i < g.VertexCount; i++)
     52       {
     53         Console.Write(i + "\t");
     54       }
     55       Console.WriteLine();
     56       Console.Write("\t");
     57       for (int i = 0; i < g.VertexCount; i++)
     58       {
     59         Console.Write("-" + "\t");
     60       }
     61       Console.WriteLine();
     62       for (int i = 0; i < g.VertexCount; i++)
     63       {
     64         Console.Write(i + "|\t");
     65         for (int j = 0; j < g.VertexCount; j++)
     66         {
     67           if (distSet[i, j] == int.MaxValue)
     68           {
     69             Console.Write("INF" + "\t");
     70           }
     71           else
     72           {
     73             Console.Write(distSet[i, j] + "\t");
     74           }
     75         }
     76         Console.WriteLine();
     77       }
     78     }
     80     class Edge
     81     {
     82       public Edge(int begin, int end, int weight)
     83       {
     84         this.Begin = begin;
     85         this.End = end;
     86         this.Weight = weight;
     87       }
     89       public int Begin { get; private set; }
     90       public int End { get; private set; }
     91       public int Weight { get; private set; }
     93       public void Reweight(int newWeight)
     94       {
     95         this.Weight = newWeight;
     96       }
     98       public override string ToString()
     99       {
    100         return string.Format(
    101           "Begin[{0}], End[{1}], Weight[{2}]",
    102           Begin, End, Weight);
    103       }
    104     }
    106     class Graph
    107     {
    108       private Dictionary<int, List<Edge>> _adjacentEdges
    109         = new Dictionary<int, List<Edge>>();
    111       public Graph(int vertexCount)
    112       {
    113         this.VertexCount = vertexCount;
    114       }
    116       public int VertexCount { get; private set; }
    118       public int EdgeCount
    119       {
    120         get
    121         {
    122           return _adjacentEdges.Values.SelectMany(e => e).Count();
    123         }
    124       }
    126       public void AddEdge(int begin, int end, int weight)
    127       {
    128         if (!_adjacentEdges.ContainsKey(begin))
    129         {
    130           var edges = new List<Edge>();
    131           _adjacentEdges.Add(begin, edges);
    132         }
    134         _adjacentEdges[begin].Add(new Edge(begin, end, weight));
    135       }
    137       public void AddEdge(Edge edge)
    138       {
    139         AddEdge(edge.Begin, edge.End, edge.Weight);
    140       }
    142       public void AddEdges(IEnumerable<Edge> edges)
    143       {
    144         foreach (var edge in edges)
    145         {
    146           AddEdge(edge);
    147         }
    148       }
    150       public IEnumerable<Edge> GetAllEdges()
    151       {
    152         return _adjacentEdges.Values.SelectMany(e => e);
    153       }
    155       public int[,] Johnsons()
    156       {
    157         // distSet[,] will be the output matrix that will finally have the shortest 
    158         // distances between every pair of vertices
    159         int[,] distSet = new int[VertexCount, VertexCount];
    161         for (int i = 0; i < VertexCount; i++)
    162         {
    163           for (int j = 0; j < VertexCount; j++)
    164           {
    165             distSet[i, j] = int.MaxValue;
    166           }
    167         }
    168         for (int i = 0; i < VertexCount; i++)
    169         {
    170           distSet[i, i] = 0;
    171         }
    173         // step 1: add new vertex s and connect to all vertices
    174         Graph g = new Graph(this.VertexCount + 1);
    175         g.AddEdges(this.GetAllEdges());
    177         int s = this.VertexCount;
    178         for (int i = 0; i < this.VertexCount; i++)
    179         {
    180           g.AddEdge(s, i, 0);
    181         }
    183         // step 2: use Bellman-Ford to evaluate shortest paths from s
    184         int[] h = g.BellmanFord(s);
    186         // step 3: re-weighting edges of the original graph
    187         //         w(u, v) = w(u, v) + (h[u] - h[v])
    188         foreach (var edge in this.GetAllEdges())
    189         {
    190           edge.Reweight(edge.Weight + (h[edge.Begin] - h[edge.End]));
    191         }
    193         // step 4: use Dijkstra for each edges
    194         for (int begin = 0; begin < this.VertexCount; begin++)
    195         {
    196           int[] dist = this.Dijkstra(begin);
    197           for (int end = 0; end < dist.Length; end++)
    198           {
    199             if (dist[end] != int.MaxValue)
    200             {
    201               distSet[begin, end] = dist[end] - (h[begin] - h[end]);
    202             }
    203           }
    204         }
    206         return distSet;
    207       }
    209       public int[,] FloydWarshell()
    210       {
    211         /* distSet[,] will be the output matrix that will finally have the shortest 
    212            distances between every pair of vertices */
    213         int[,] distSet = new int[VertexCount, VertexCount];
    215         for (int i = 0; i < VertexCount; i++)
    216         {
    217           for (int j = 0; j < VertexCount; j++)
    218           {
    219             distSet[i, j] = int.MaxValue;
    220           }
    221         }
    222         for (int i = 0; i < VertexCount; i++)
    223         {
    224           distSet[i, i] = 0;
    225         }
    227         /* Initialize the solution matrix same as input graph matrix. Or 
    228            we can say the initial values of shortest distances are based
    229            on shortest paths considering no intermediate vertex. */
    230         foreach (var edge in _adjacentEdges.Values.SelectMany(e => e))
    231         {
    232           distSet[edge.Begin, edge.End] = edge.Weight;
    233         }
    235         /* Add all vertices one by one to the set of intermediate vertices.
    236           ---> Before start of a iteration, we have shortest distances between all
    237           pairs of vertices such that the shortest distances consider only the
    238           vertices in set {0, 1, 2, .. k-1} as intermediate vertices.
    239           ---> After the end of a iteration, vertex no. k is added to the set of
    240           intermediate vertices and the set becomes {0, 1, 2, .. k} */
    241         for (int k = 0; k < VertexCount; k++)
    242         {
    243           // Pick all vertices as source one by one
    244           for (int i = 0; i < VertexCount; i++)
    245           {
    246             // Pick all vertices as destination for the above picked source
    247             for (int j = 0; j < VertexCount; j++)
    248             {
    249               // If vertex k is on the shortest path from
    250               // i to j, then update the value of distSet[i,j]
    251               if (distSet[i, k] != int.MaxValue
    252                 && distSet[k, j] != int.MaxValue
    253                 && distSet[i, k] + distSet[k, j] < distSet[i, j])
    254               {
    255                 distSet[i, j] = distSet[i, k] + distSet[k, j];
    256               }
    257             }
    258           }
    259         }
    261         return distSet;
    262       }
    264       public int[] BellmanFord(int source)
    265       {
    266         // distSet[i] will hold the shortest distance from source to i
    267         int[] distSet = new int[VertexCount];
    269         // Step 1: Initialize distances from source to all other vertices as INFINITE
    270         for (int i = 0; i < VertexCount; i++)
    271         {
    272           distSet[i] = int.MaxValue;
    273         }
    274         distSet[source] = 0;
    276         // Step 2: Relax all edges |V| - 1 times. A simple shortest path from source
    277         // to any other vertex can have at-most |V| - 1 edges
    278         for (int i = 1; i <= VertexCount - 1; i++)
    279         {
    280           foreach (var edge in _adjacentEdges.Values.SelectMany(e => e))
    281           {
    282             int u = edge.Begin;
    283             int v = edge.End;
    284             int weight = edge.Weight;
    286             if (distSet[u] != int.MaxValue
    287               && distSet[u] + weight < distSet[v])
    288             {
    289               distSet[v] = distSet[u] + weight;
    290             }
    291           }
    292         }
    294         // Step 3: check for negative-weight cycles.  The above step guarantees
    295         // shortest distances if graph doesn't contain negative weight cycle.
    296         // If we get a shorter path, then there is a cycle.
    297         foreach (var edge in _adjacentEdges.Values.SelectMany(e => e))
    298         {
    299           int u = edge.Begin;
    300           int v = edge.End;
    301           int weight = edge.Weight;
    303           if (distSet[u] != int.MaxValue
    304             && distSet[u] + weight < distSet[v])
    305           {
    306             Console.WriteLine("Graph contains negative weight cycle.");
    307           }
    308         }
    310         return distSet;
    311       }
    313       public int[] Dijkstra(int source)
    314       {
    315         // dist[i] will hold the shortest distance from source to i
    316         int[] distSet = new int[VertexCount];
    318         // sptSet[i] will true if vertex i is included in shortest
    319         // path tree or shortest distance from source to i is finalized
    320         bool[] sptSet = new bool[VertexCount];
    322         // initialize all distances as INFINITE and stpSet[] as false
    323         for (int i = 0; i < VertexCount; i++)
    324         {
    325           distSet[i] = int.MaxValue;
    326           sptSet[i] = false;
    327         }
    329         // distance of source vertex from itself is always 0
    330         distSet[source] = 0;
    332         // find shortest path for all vertices
    333         for (int i = 0; i < VertexCount - 1; i++)
    334         {
    335           // pick the minimum distance vertex from the set of vertices not
    336           // yet processed. u is always equal to source in first iteration.
    337           int u = CalculateMinDistance(distSet, sptSet);
    339           // mark the picked vertex as processed
    340           sptSet[u] = true;
    342           // update dist value of the adjacent vertices of the picked vertex.
    343           for (int v = 0; v < VertexCount; v++)
    344           {
    345             // update dist[v] only if is not in sptSet, there is an edge from 
    346             // u to v, and total weight of path from source to  v through u is 
    347             // smaller than current value of dist[v]
    348             if (!sptSet[v]
    349               && distSet[u] != int.MaxValue
    350               && _adjacentEdges.ContainsKey(u)
    351               && _adjacentEdges[u].Exists(e => e.End == v))
    352             {
    353               int d = _adjacentEdges[u].Single(e => e.End == v).Weight;
    354               if (distSet[u] + d < distSet[v])
    355               {
    356                 distSet[v] = distSet[u] + d;
    357               }
    358             }
    359           }
    360         }
    362         return distSet;
    363       }
    365       private int CalculateMinDistance(int[] distSet, bool[] sptSet)
    366       {
    367         int minDistance = int.MaxValue;
    368         int minDistanceIndex = -1;
    370         for (int v = 0; v < VertexCount; v++)
    371         {
    372           if (!sptSet[v] && distSet[v] <= minDistance)
    373           {
    374             minDistance = distSet[v];
    375             minDistanceIndex = v;
    376           }
    377         }
    379         return minDistanceIndex;
    380       }
    381     }
    382   }
    383 }

    运行结果如下:

  • 广度优先搜索
  • 深度优先搜索
  • Breadth First Traversal for a Graph
  • Depth First Traversal for a Graph
  • Dijkstra 单源最短路径算法
  • Bellman-Ford 单源最短路径算法
  • Bellman–Ford algorithm
  • Introduction To Algorithm
  • Floyd-Warshall's algorithm
  • Bellman-Ford algorithm for single-source shortest paths
  • Dynamic Programming | Set 23 (Bellman–Ford Algorithm)
  • Dynamic Programming | Set 16 (Floyd Warshall Algorithm)
  • Johnson’s algorithm for All-pairs shortest paths
  • Floyd-Warshall's algorithm
  • 最短路径算法--Dijkstra算法,Bellmanford算法,Floyd算法,Johnson算法
  • QuickGraph, Graph Data Structures And Algorithms for .NET
  • CHAPTER 26: ALL-PAIRS SHORTEST PATHS
  • 本篇文章《Johnson 全源最短路径算法》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。