TypeError: first argument must be an iterable of pandas objects, you passed an object of type “DataF 2021-08-22 17:51:37

使用concat()函数拼接两个表格,出现以下错误:

TypeError: first argument must be an iterable of pandas objects, you passed an object of type "DataFrame"

解决方法:

最后一行必须采用以下格式:

df=pd.concat([df1,df2,df3,df4,...], ignore_index=True)

问题得以解决。

相关问题,可参考: https://stackoverflow.com/questions/39534676/typeerror-first-argument-must-be-an-iterable-of-pandas-objects-you-passed-an-o

更多文章可关注微信公众号:Excelwork “作为 pandas 库常用的函数,应该做到熟悉才行,最近发现自己也并没真正理解这个函数,本文目的也是加深下对concat函数的理解。” 语法: pandas .concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verify_integrity=False,sort=None,copy=True)... http://liao.cpython.org/ pandas 26/ http://liao.cpython.org/ pandas 25/ https://blog.csdn.net/weixin_37226516/article/details/64134643 两个Series的拼接,默认是在列上(往下)拼接,axis = 0,如果要横向往右拼接,axis = 1 concat(objs, a... 3.问题定位:      先看报错代码:大概意思是, 传给优化器的learning_rate参数错误。 模型训练是在服务器Linux环境下进行的,之后在本地Windows(另一环境)继续跑代码,所以初步怀疑是keras版本不一致导致的。  Linux下keras版本为: 本地版本: 再结合大佬博客 解 TypeError : ‘required’ is an invalid argument for positionals 的解决方法 当我在使用arg pa rse模块时,遇到了如下错误: import arg pa rse pa rser = arg pa rse. Argument Pa rser(description = 'debug_example') pa rser.add_ argument ('-- data _root', default = ' data / pa th', type = str, required=False, help = 'the data set pa th') pa rser.add_ar type (np.float64(0).item()) # type (np.uint32(0).item()) # # examples using np.asscalar(a) type (np.a 错误提示: 开启线程时提示 TypeError : func_one_ pa ra() argument after * must be an iterable , not int #juzicode.com/vx:桔子code import threading def func( pa ra1): print( pa ra1) if __name__ == '__main__': pa ra1 =11 Download the attached file and extract it to the folder C:\Keil_v5\UV4. If you have installed PK51 to a different folder, you need to adapt the pa th accordingly. The file UV4.exe is replaced with version 5.14.2.1. 亲测可以在win10和5.24中使用 CSV & Text files The two workhorse functions for reading text files (a.k.a. flat files) are read_csv() and read_table(). They both use the same pa rsing code to intelligently convert tabular data in