TypeError: first argument must be an iterable of pandas objects, you passed an object of type “DataF
2021-08-22 17:51:37
使用concat()函数拼接两个表格,出现以下错误:
TypeError: first argument must be an iterable of pandas objects, you passed an object of type "DataFrame"
解决方法:
最后一行必须采用以下格式:
df=pd.concat([df1,df2,df3,df4,...], ignore_index=True)
问题得以解决。
相关问题,可参考:
https://stackoverflow.com/questions/39534676/typeerror-first-argument-must-be-an-iterable-of-pandas-objects-you-passed-an-o
更多文章可关注微信公众号:Excelwork
“作为
pandas
库常用的函数,应该做到熟悉才行,最近发现自己也并没真正理解这个函数,本文目的也是加深下对concat函数的理解。”
语法:
pandas
.concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False,keys=None,levels=None,names=None,verify_integrity=False,sort=None,copy=True)...
http://liao.cpython.org/
pandas
26/
http://liao.cpython.org/
pandas
25/
https://blog.csdn.net/weixin_37226516/article/details/64134643
两个Series的拼接,默认是在列上(往下)拼接,axis = 0,如果要横向往右拼接,axis = 1
concat(objs, a...
3.问题定位:
先看报错代码:大概意思是, 传给优化器的learning_rate参数错误。
模型训练是在服务器Linux环境下进行的,之后在本地Windows(另一环境)继续跑代码,所以初步怀疑是keras版本不一致导致的。
Linux下keras版本为:
本地版本:
再结合大佬博客 解
TypeError
: ‘required’ is an invalid
argument
for positionals 的解决方法
当我在使用arg
pa
rse模块时,遇到了如下错误:
import arg
pa
rse
pa
rser = arg
pa
rse.
Argument
Pa
rser(description = 'debug_example')
pa
rser.add_
argument
('--
data
_root', default = '
data
/
pa
th',
type
= str, required=False, help = 'the
data
set
pa
th')
pa
rser.add_ar
type
(np.float64(0).item()) #
type
(np.uint32(0).item()) #
# examples using np.asscalar(a)
type
(np.a
错误提示:
开启线程时提示
TypeError
: func_one_
pa
ra()
argument
after * must be an
iterable
, not int
#juzicode.com/vx:桔子code
import threading
def func(
pa
ra1):
print(
pa
ra1)
if __name__ == '__main__':
pa
ra1 =11
Download the attached file and extract it to the folder C:\Keil_v5\UV4. If you have installed PK51 to a different folder, you need to adapt the
pa
th accordingly. The file UV4.exe is replaced with version 5.14.2.1.
亲测可以在win10和5.24中使用
CSV & Text files
The two workhorse functions for reading text files (a.k.a. flat files) are read_csv() and read_table().
They both use the same
pa
rsing code to intelligently convert tabular
data
in