1、问题引入
在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。一个带有一个自变量的线性回归方程代表一条直线。我们需要对线性回归结果进行统计分析。
例如,假设我们已知一些学生年纪和游戏时间的数据,可以建立一个回归方程,输入一个新的年纪时,预测该学生的游戏时间。自变量为学生年纪,因变量为游戏时间。当只有一个因变量时,我们称该类问题为
简单线性回归
。当游戏时间与学生年纪和学生性别有关,因变量有多个时,我们称该类问题为
多元线性回归
。
2、常见的统计量
在研究该问题之前,首先了解下编程中用到的常见的统计量:
编程关键在于如何求取b0和b1的值,我们引入一个方程(sum of square):
当上述方程的值最小时,我们认为求取到线程回归方程参数的值,对该方程求最小值可以进一步转化为求导和求极值的问题,求导过程省略,最后结论如下:
实际代码:
import numpy as np
from matplotlib import pylab as pl
# 定义训练数据
x = np.array([1,3,2,1,3])
y = np.array([14,24,18,17,27])
# 回归方程求取函数
def fit(x,y):
if len(x) != len(y):
return
numerator = 0.0
denominator = 0.0
x_mean = np.mean(x)
y_mean = np.mean(y)
for i in range(len(x)):
numerator += (x[i]-x_mean)*(y[i]-y_mean)
denominator += np.square((x[i]-x_mean))
print('numerator:',numerator,'denominator:',denominator)
b0 = numerator/denominator
b1 = y_mean - b0*x_mean
return b0,b1
# 定义预测函数
def predit(x,b0,b1):
return b0*x + b1
# 求取回归方程
b0,b1 = fit(x,y)
print('Line is:y = %2.0fx + %2.0f'%(b0,b1))
x_test = np.array([0.5,1.5,2.5,3,4])
y_test = np.zeros((1,len(x_test)))
for i in range(len(x_test)):
y_test[0][i] = predit(x_test[i],b0,b1)
# 绘制图像
xx = np.linspace(0, 5)
yy = b0*xx + b1
pl.plot(xx,yy,'k-')
pl.scatter(x,y,cmap=pl.cm.Paired)
pl.scatter(x_test,y_test[0],cmap=pl.cm.Paired)
pl.show()
蓝色表示测试数据,橙色表示预测数据。
3、多元线性回归实例及编程实现
多元线性回归方程和简单线性回归方程类似,不同的是由于因变量个数的增加,求取参数的个数也相应增加,推导和求取过程也不一样。
y=β
0
+β
1
x
1
+β
2
x
2
+ ... +β
p
x
p
+ε
对于b0、b1、…、bn的推导和求取过程,引用一个第三方库进行计算。以如下数据为例,对运输里程、运输次数与运输总时间的关系,建立多元线性回归模型:
#
定义训练数据
x = np.array([[100,4,9.3],[50,3,4.8],[100,4,8.9
],
[
100,2,6.5],[50,2,4.2],[80,2,6.2
],
[
75,3,7.4],[65,4,6],[90,3,7.6],[90,2,6.1
]])
print
(x)
X
= x[:,:-1
]
Y
= x[:,-1
]
print
(X,Y)
#
训练数据
regr =
linear_model.LinearRegression()
regr.fit(X,Y)
print
(
'
coefficients(b1,b2...):
'
,regr.coef_)
print
(
'
intercept(b0):
'
,regr.intercept_)
x_test = np.array([[102,6],[100,4
]])
y_test
=
regr.predict(x_test)
print
(y_test)
如果特征向量中存在分类型变量,例如车型,我们需要进行特殊处理:
import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn import linear_model
# 定义数据集
x = np.array([[100,4,1,9.3],[50,3,0,4.8],[100,4,1,8.9],
[100,2,2,6.5],[50,2,2,4.2],[80,2,1,6.2],
[75,3,1,7.4],[65,4,0,6],[90,3,0,7.6],
[100,4,1,9.3],[50,3,0,4.8],[100,4,1,8.9],[100,2,2,6.5]])
x_trans = []
for i in range(len(x)):
x_trans.append({'x1':str(x[i][2])})
vec = DictVectorizer()
dummyX = vec.fit_transform(x_trans).toarray()
x = np.concatenate((x[:,:-2],dummyX[:,:],x[:,-1].reshape(len(x),1)),axis=1)
x = x.astype(float)
X = x[:,:-1]
Y = x[:,-1]
print(x,X,Y)
# 训练数据
regr = linear_model.LinearRegression()
regr.fit(X,Y)
print('coefficients(b1,b2...):',regr.coef_)
print('intercept(b0):',regr.intercept_)