The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Beijing Da Xue Xue Bao Yi Xue Ban. 2021 Dec 18; 53(6): 1026–1031.
Published online 2021 Oct 29. Chinese. doi: 10.19723/j.issn.1671-167X.2021.06.003
PMCID: PMC8695154

Language: Chinese | English

类风湿关节炎患者趋化因子CXCL9和CXCL10在骨侵蚀中的作用

Effect of chemokines CXCL9 and CXCL10 on bone erosion in patients with rheumatoid arthritis

钟 华

北京大学人民医院风湿免疫科,风湿病机制及免疫诊断北京市重点实验室,北京 100044, Department of Rheumatology and Immunology, Peking University People's Hospital; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing 100044, China

Find articles by 钟 华

徐 丽玲

北京大学人民医院风湿免疫科,风湿病机制及免疫诊断北京市重点实验室,北京 100044, Department of Rheumatology and Immunology, Peking University People's Hospital; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing 100044, China

Find articles by 徐 丽玲

白 明欣

北京大学人民医院风湿免疫科,风湿病机制及免疫诊断北京市重点实验室,北京 100044, Department of Rheumatology and Immunology, Peking University People's Hospital; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing 100044, China

Find articles by 白 明欣

苏 茵

北京大学人民医院风湿免疫科,风湿病机制及免疫诊断北京市重点实验室,北京 100044, Department of Rheumatology and Immunology, Peking University People's Hospital; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing 100044, China 北京大学人民医院风湿免疫科,风湿病机制及免疫诊断北京市重点实验室,北京 100044, Department of Rheumatology and Immunology, Peking University People's Hospital; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing 100044, China RA, rheumatoid arthritis; SJC, swollen joints; TJC, tender joints; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; Ig, immunoglo-bulin; RF, rheumatoid factor; ACPA, anti-citrullinated protein antibody. SJC0.3020.0090.4020.002TJC0.1600.1760.3390.010ESR0.1450.2220.2010.135CRP0.0760.5230.2690.043IgA0.1610.1750.2660.045IgG0.0670.5710.1920.153IgM0.2290.0510.3450.009RF0.2850.0150.570< 0.001ACPA0.0310.7930.540< 0.001

2.3. 血清CXCL9和CXCL10水平与RA患者疾病活动度的相关性分析

血清CXCL9和CXCL10水平与RA患者的DAS28评分呈正相关( r =0.301、0.364, P =0.011、0.006, 图 2 )。高疾病活动度组(DAS28>5.1)的RA患者血清CXCL9水平[304.73 (236.42, 617.51) ng/L]、CXCL10水平[132.86 (74.55, 201.05) ng/L]分别显著高于中低疾病活动组(DAS28≤5.1)的CXCL9水平[175.39 (107.29, 481.13) ng/L]和CXCL10水平[60.03 (30.84, 156.21) ng/L],差异有统计学意义( P 均 < 0.05)。

血清CXCL9和CXCL10与RA患者疾病活动度的相关性

Correlation between serum CXCL9 and CXCL10 levels with disease activities in RA patients

DAS28, disease activity score 28; RA, rheumatoid arthritis.

2.4. 血清CXCL9和CXCL10水平与RA患者骨侵蚀的关系

将骨侵蚀组与非骨侵蚀组RA患者的临床特征、血清学指标、疾病活动度及趋化因子水平进行比较,结果显示骨侵蚀组RA患者的病程更长,且血清CXCL9和CXCL10水平明显高于非骨侵蚀组,差异均有统计学意义( P < 0.05, 表 2 )。

表 2

发生与未发生骨侵蚀的RA患者临床特征及实验室指标

Clinical and biochemical characteristics of RA patients with or without bone erosion

Items All subjects Without bone erosion With bone erosion P value
Data are presented as x ± s and M ( P 25 , P 75 ). RA, rheumatoid arthritis; SJC, swollen joints; TJC, tender joints; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; RF, rheumatoid factor; ACPA, anti-citrullinated protein antibody; DAS28, disease activity score 28.
Patients, n 52 17 35
Gender, n
Female 38 12 26 0.778
Male 14 5 9
Age/years 56 (52, 66) 55 (51, 66) 57 (52, 70) 0.667
Disease duration/month 60 (21, 204) 36 (8, 66) 84 (24, 240) 0.010
SJC, n 4 (1, 8) 2 (0, 8) 5 (2, 8) 0.234
TJC, n 4 (1, 8) 5 (2, 8) 2 (1, 7) 0.169
ESR/(mm/h) 52 (24, 100) 33 (13, 88) 61 (36, 102) 0.077
CRP/(mg/L) 21.30 (6.42, 53.25) 11.40 (3.07, 48.95) 30.90 (9.10, 53.80) 0.084
IgA/(g/L) 2.43 (1.75, 3.59) 2.01 (1.69, 2.86) 2.59 (1.80, 3.81) 0.172
IgG/(g/L) 11.95 (10.43, 13.30) 10.70 (9.77, 12.80) 12.40 (10.70, 14.30) 0.141
IgM/(g/L) 1.29 (0.82, 1.78) 1.22 (0.73, 1.51) 1.34 (0.92, 1.93) 0.310
RF/(IU/mL) 136.50 (31.28, 340.25) 133.00 (34.15, 404.50) 138.00 (28.00, 353.00) 0.984
ACPA/(U/mL) 144.57 (23.91, 200.00) 118.02 (63.96, 200.00) 155.81 (8.36, 200.00) 0.579
DAS28 4.74±1.26 4.52±1.35 4.85±1.22 0.385
CXCL9/(ng/L) 280.27 (150.50, 439.83) 149.90 (75.88, 257.72) 306.84 (234.02, 460.55) < 0.001
CXCL10/(ng/L) 107.10 (52.62, 200.33) 54.43 (26.30, 83.69) 153.74 (89.50, 209.59) 0.001

进一步将病程时间、血清ACPA水平、临床疾病活动度DAS28评分及血清CXCL9和CXCL10水平纳入多因素Logistic回归模型,分析结果显示,长病程、高疾病活动度及高血清CXCL9水平与RA患者发生骨侵蚀相关( 表 3 )。

表 3

血清CXCL9、CXCL10水平与RA骨侵蚀的相关性分析

Multiple Logistic regression analysis of factors associated with RA patients with bone erosion

Items P value
OR , odds ratio; 95% CI , 95% confidence intervals; RA, rheumatoid arthritis; ACPA, anti-citrullinated protein antibody; DAS28, disease activity score 28.
Disease duration 0.015 6.550 1.015 1.003-1.026 0.010
ACPA -0.005 0.834 0.995 0.985-1.006 0.361
DAS28 1.063 4.539 2.896 1.089-7.701 0.033
CXCL9 0.011 8.339 1.012 1.004-1.019 0.004
CXCL10 -0.004 3.204 0.996 0.992-1.000 0.073

3. 讨论

RA是一种致残性、慢性、自身免疫性疾病,早期的组织病理表现包括滑膜细胞增生、间质炎性细胞浸润和血管翳形成,晚期可出现骨和软骨组织破坏、最终导致关节强直、畸形,表现为关节活动受限、功能丧失和生活质量下降。目前,临床上主要依靠影像学手段作为临床评估患者关节破坏的客观指标,虽然随着技术的不断进步,关节超声和MRI的应用已大大提高了RA患者骨侵蚀的早期检出率,但经影像学检查显示异常的患者即使临床症状和体征缓解,关节损伤的进程仍会持续进展。近年来的研究发现,RA患者在病程2年内的骨侵蚀发生率高达90%,且大部分患者在6个月内即开始出现骨侵蚀,而在第1年的骨质破坏进展要明显快于第2年和第3年 [ 17 ] 。本研究旨在探讨血清学指标与骨侵蚀发生的相关性,进一步探索早期监测RA患者骨关节破坏的风险指标。

趋化因子是一类细胞因子样分泌蛋白的超家族,包括CXC、CC、C及CX3C四个亚族,通过与靶细胞表面的受体结合发挥趋化作用,参与多种生理和病理过程,包括炎症、感染、免疫、肿瘤等 [ 18 ] 。既往研究显示,CXC亚家族在自身免疫性疾病中有明显的促炎效应,CXCL9和CXCL10均是CXC亚家族成员,由IFN-γ诱导产生,为趋化因子受体CXCR3的配体,两者结合后促进Th1细胞方向分化 [ 19 - 20 ] 。在炎症细胞中,单核/巨噬细胞和T淋巴细胞是CXCL9和CXCL10的主要来源。趋化因子选择性招募及活化炎症细胞进入滑膜组织中,介导炎症反应,从而在RA骨破坏中发挥重要作用。

CXCL9 的编码基因位置与 CXCL10 基因紧邻 [ 21 ] ,推测两者可能具有相似的功能。本研究结果表明,CXCL9在RA患者外周血中的表达明显升高,且与疾病活动性相关,Logistic分析提示CXCL9水平与RA发生骨侵蚀有关( OR =1.012, P =0.004)。CXCL9除了作为重要的趋化因子参与自体免疫性关节炎发病之外,也有研究报道其参与多种感染、肿瘤及免疫性疾病,如人类免疫缺陷病毒感染、病毒性肝炎、结直肠癌、乳腺癌、狼疮性肾炎、炎症性肠病及移植物抗宿主病等。目前,关于CXCL9对骨破坏的作用机制研究较少,随着人们对骨组织稳态的认识不断加深,CXCLs/CXCR3趋化轴在RA骨代谢中的作用可以作为未来进一步探索的方向。

与CXCL9相比,CXCL10在RA发病中的作用研究较多,但目前的观点并不完全一致。在炎性关节炎小鼠模型的滑膜组织中发现,CXCL10可通过刺激核因子κB受体活化因子配体(receptor activator for nuclear factor-κB ligand, RANKL)及肿瘤坏死因子(tumor necrosis factor, TNF)在CD4 + T细胞上的表达诱导RA骨破坏的发生,加入拮抗剂后小鼠骨关节的破坏程度明显降低,提示CXCL10可能与骨侵蚀的发生有关联 [ 22 ] 。但也有研究显示,并未在受累关节中发现CXCL10表达上的差异 [ 23 ] 。本研究结果显示,RA患者外周血清中CXCL10的表达水平显著高于健康对照人群,进一步的相关性分析提示,CXCL10与RF及ACPA滴度呈正相关,且高、低疾病活动度的患者组间CXCL10表达差异有统计学意义,高CXCL10水平组RA患者发生骨侵蚀的比例更高。以上结果进一步证实了CXCL10可以作为RA患者体内炎症活跃及骨破坏发生的提示指标,然而Logistic回归分析未证实这种关联( OR =0.996, P >0.05)。以上结果的不一致可能与病例选择的异质性有关,RA是一个长病程、多因素参与的复杂疾病,趋化因子在不同阶段发挥的主要作用会受到其他细胞因子的调节,因此,CXCL10与骨破坏之间的关系还需要进一步挖掘。

综上所述,RA患者血清中趋化因子CXCL9和CXCL10的表达水平升高,与RA疾病活动性及骨侵蚀具有相关性,可能是参与RA骨破坏的重要因子。本研究尚存在一定的局限性,一方面,横断面研究对因果关系的分析能力不足,尚不足以论证RA罹患骨侵蚀的危险因素;另一方面,具有完整影像学资料的例数较少且缺少随访数据。在后续研究中,可以进一步扩大样本量并设计随访队列完善对骨侵蚀的评估,明确CXCLs/CXCR3趋化轴在RA骨代谢中的作用机制。

Funding Statement

国家自然科学基金(81671609)和北京市科技计划(Z191100006619111)

Funding Statement

Supported by the National Natural Science Foundation of China (81671609) and Beijing Scientific Program (Z191100006619111)

References

1. Sparks JA. Rheumatoid arthritis. Ann Intern Med. 2019; 170 (1):ITC1–ITC16. doi: 10.7326/AITC201901010. [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Zhu H, Li R, Da Z, et al. Remission assessment of rheumatoid arthritis in daily practice in China: A cross-sectional observational study. Clin Rheumatol. 2018; 37 (3):597–605. doi: 10.1007/s10067-017-3850-z. [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. Zhou Y, Wang X, An Y, et al. Disability and health-related quality of life in Chinese patients with rheumatoid arthritis: A cross-sectional study. Int J Rheum Dis. 2018; 21 (9):1709–1715. doi: 10.1111/1756-185X.13345. [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. Poeta VM, Massara M, Capucetti A, et al. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol. 2019; 10 :379. doi: 10.3389/fimmu.2019.00379. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. Susek KH, Karvouni M, Alici E, et al. The role of CXC chemokine receptors 1-4 on immune cells in the tumor microenvironment. Front Immunol. 2018; 9 :2159. doi: 10.3389/fimmu.2018.02159. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Tokunaga R, Zhang W, Naseem M, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation: A target for novel cancer therapy. Cancer Treat Rev. 2018; 63 :40–47. doi: 10.1016/j.ctrv.2017.11.007. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011; 365 (23):2205–2219. doi: 10.1056/NEJMra1004965. [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Muntyanu A, Abji F, Liang K, et al. Differential gene and protein expression of chemokines and cytokines in synovial fluid of patients with arthritis. Arthritis Res Ther. 2016; 18 (1):296. doi: 10.1186/s13075-016-1196-6. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Antonelli A, Ferrari SM, Giuggioli D, et al. Chemokine (C-X-C motif) ligand CXCL10 in autoimmune diseases. Autoimmun Rev. 2014; 13 (3):272–280. doi: 10.1016/j.autrev.2013.10.010. [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010; 62 (9):2569–2581. doi: 10.1002/art.27584. [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. Zhang W, Doherty M, Peat G, et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis. 2010; 69 (3):483–489. doi: 10.1136/ard.2009.113100. [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Prevoo ML, van't Hof MA, Kuper HH, et al. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995; 38 (1):44–48. doi: 10.1002/art.1780380107. [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Fransen J, van Riel PL. The disease activity score and the EULAR response criteria. Rheum Dis Clin North Am. 2009; 35 (4):745–757, ⅶ-ⅷ. doi: 10.1016/j.rdc.2009.10.001. [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988; 31 (3):315–324. doi: 10.1002/art.1780310302. [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Ostergaard M, Peterfy C, Conaghan P, et al. OMERACT rheumatoid arthritis magnetic resonance imaging studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol. 2003; 30 (6):1385–1386. [ PubMed ] [ Google Scholar ]
16. Bruyn GA, Hanova P, Iagnocco A, et al. Ultrasound definition of tendon damage in patients with rheumatoid arthritis. Results of a OMERACT consensus-based ultrasound score focusing on the diagnostic reliability. Ann Rheum Dis. 2014; 73 (11):1929–1934. doi: 10.1136/annrheumdis-2013-203596. [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. Zeidler H. The need to better classify and diagnose early and very early rheumatoid arthritis. J Rheumatol. 2012; 39 (2):212–217. doi: 10.3899/jrheum.110967. [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu Rev Immunol. 2014; 32 :659–702. doi: 10.1146/annurev-immunol-032713-120145. [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Korniejewska A, McKnight AJ, Johnson Z, et al. Expression and agonist responsiveness of CXCR3 variants in human T lymphocytes. Immunology. 2011; 132 (4):503–515. doi: 10.1111/j.1365-2567.2010.03384.x. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol. 2007; 96 :41–101. [ PubMed ] [ Google Scholar ]
21. Farber JM. Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol. 1997; 61 (3):246–257. doi: 10.1002/jlb.61.3.246. [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Kwak HB, Ha H, Kim HN, et al. Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for bone-erosive experimental arthritis. Arthritis Rheum. 2008; 58 (5):1332–1342. doi: 10.1002/art.23372. [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Kraan MC, Patel DD, Haringman JJ, et al. The development of clinical signs of rheumatoid synovial inflammation is associated with increased synthesis of the chemokine CXCL8 (interleukin-8) Arthritis Res. 2001; 3 (1):65–71. doi: 10.1186/ar141. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Peking University (Health Sciences) are provided here courtesy of Editorial Office of Beijing Da Xue Xue Bao Yi Xue Ban, Peking University Health Science Center