相关文章推荐
微醺的墨镜  ·  C# PNG Jpeg图片压缩 - ...·  1 月前    · 
寂寞的海豚  ·  javascript - ...·  1 年前    · 
博学的双杠  ·  java - Getting ...·  1 年前    · 

pytorch中构建卷积层一般使用nn.Conv2d方法,有些情况下我们需要自定义卷积核的权值weight,而nn.Conv2d中的卷积参数是不允许自定义的,此时可以使用torch.nn.functional.conv2d简称F.conv2d

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

F.conv2d可以自己输入且也必须要求自己输入卷积权值weight和偏置bias。因此,构建自己想要的卷积核参数,再输入F.conv2d即可。下面是一个用F.conv2d构建卷积层的例子,这里为了网络模型需要写成了一个类:

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.weight = nn.Parameter(torch.randn(16, 1, 5, 5))  # 自定义的权值
        self.bias = nn.Parameter(torch.randn(16))    # 自定义的偏置
    def forward(self, x):
        x = x.view(x.size(0), -1)
        out = F.conv2d(x, self.weight, self.bias, stride=1, padding=0)
        return out

值得注意的是,pytorch中各层需要训练的权重的数据类型设为nn.Parameter,而不是Tensor或者Variable。parameter的require_grad默认设置为true,而Varaible默认设置为False。

pytorch中构建卷积层一般使用nn.Conv2d方法,有些情况下我们需要自定义卷积核的权值weight,而nn.Conv2d中的卷积参数是不允许自定义的,此时可以使用torch.nn.functional.conv2d简称F.conv2dtorch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, di... class BiFPN(nn.Module): def __init__(self, fpn_sizes): self.w1 = nn.Parameter(torch.rand(1)) print(no---------------------------------------------------,self.w1.data, self.w1.grad) 下面这个例子说明中间变量可能没有梯度,但是最终变量有梯度: cy1 cd都有梯度 import torch xP=torch.Tensor([[ torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 通过上面的输入发现想自定义自己的卷积核,比如高斯... 首先说下pytorch中的Tensor通道排列顺序是:[batch, channel, height, width] 我们常用的卷积(Conv2d)在pytorch中对应的函数是: torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, gr
在做一些模型分析的时候可能需要将卷积核内的参数定制化(eg:全为1),此时就没办法直接使用模型中定义好的卷积了,需要将其数据给修改下方能使用,但是其输入输出通道以及卷积核大小需要留用,在此就可以单独的将 卷积的 weight/bias 进行从新赋值即可: 在给 conv.weight/bais.data 赋值的时候,其类型必须是 Tensor 维度必须符合卷积核的尺寸,即 conv.weight : dim=(in_dim, out_dim, kerneal_size) conv.bias
for i, para in enumerate(self._net.module.features.parameters()): if i < 16: para.requires_grad = False else: para.requires_grad = True # Solver. # self._solver = torch.optim.SGD( # self._net.parameters(), lr=self._options['base_lr'], # m
PyTorch是一种常见的机器学习框架,它具有良好的GPU加速功能和易于使用的API,很受研究者和开发者的喜爱。在神经网络中,卷积是一种重要的操作,被广泛应用于图像识别、自然语言处理等领域。最近,有许多开发者开始尝试使用PyTorch中的自定义函数实现卷积操作,以替代PyTorch中自带的卷积函数。 替换卷积的一大优势在于能够有效提高模型的性能。使用自定义函数可以更加灵活地定义卷积的计算方式,从而适应更多的应用场景。此外,许多研究者认为使用自定义函数能够更好地理解卷积操作,更好地应对各种复杂问题。使用PyTorch进行卷积操作还可以避免使用第三方库的问题,降低对其他库的依赖。 当然,PyTorch中自带的卷积函数也有其优势,例如速度更快、可移植性更好、更易于使用等。不同的应用场景中,可以选择不同的卷积方式。 总的来说,PyTorch替换卷积可以带来更好的灵活性和性能,但需要根据具体的应用场景和需求,选择不同的实现方式。