全世界几十亿台电脑,连接在一起,两两通信。上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗?

互联网的核心是一系列协议,总称为"互联网协议"(Internet Protocol Suite)。它们对电脑如何连接和组网,做出了详尽的规定。理解了这些协议,就理解了互联网的原理。

下面就是我的学习笔记。因为这些协议实在太复杂、太庞大,我想整理一个简洁的框架,帮助自己从总体上把握它们。为了保证简单易懂,我做了大量的简化,有些地方并不全面和精确,但是应该能够说清楚互联网的原理。

=================================================

互联网协议入门

作者:阮一峰

1.1 五层模型

互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。

用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。

如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释。

如上图所示,最底下的一层叫做"实体层"(Physical Layer),最上面的一层叫做"应用层"(Application Layer),中间的三层(自下而上)分别是"链接层"(Link Layer)、"网络层"(Network Layer)和"传输层"(Transport Layer)。越下面的层,越靠近硬件;越上面的层,越靠近用户。

它们叫什么名字,其实并不重要。只需要知道,互联网分成若干层就可以了。

1.2 层与协议

每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。

大家都遵守的规则,就叫做"协议"(protocol)。

互联网的每一层,都定义了很多协议。这些协议的总称,就叫做"互联网协议"(Internet Protocol Suite)。它们是互联网的核心,下面介绍每一层的功能,主要就是介绍每一层的主要协议。

二、实体层

我们从最底下的一层开始。

电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。

这就叫做"实体层",它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。

三、链接层

3.1 定义

单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?

这就是"链接层"的功能,它在"实体层"的上方,确定了0和1的分组方式。

3.2 以太网协议

早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做 "以太网" (Ethernet)的协议,占据了主导地位。

以太网规定,一组电信号构成一个数据包,叫做"帧"(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。

"标头"包含数据包的一些说明项,比如发送者、接受者、数据类型等等;"数据"则是数据包的具体内容。

"标头"的长度,固定为18字节。"数据"的长度,最短为46字节,最长为1500字节。因此,整个"帧"最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。

3.3 MAC地址

上面提到,以太网数据包的"标头",包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?

以太网规定,连入网络的所有设备,都必须具有"网卡"接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。

每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。

前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。

3.4 广播

定义地址只是第一步,后面还有更多的步骤。

首先,一块网卡怎么会知道另一块网卡的MAC地址?

回答是有一种ARP协议,可以解决这个问题。这个留到后面介绍,这里只需要知道,以太网数据包必须知道接收方的MAC地址,然后才能发送。

其次,就算有了MAC地址,系统怎样才能把数据包准确送到接收方?

回答是以太网采用了一种很"原始"的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机发送,让每台计算机自己判断,是否为接收方。

上图中,1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的"标头",找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做"广播"(broadcasting)。

有了数据包的定义、网卡的MAC地址、广播的发送方式,"链接层"就可以在多台计算机之间传送数据了。

四、网络层

4.1 网络层的由来

以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。

但是,这样做有一个重大的缺点。以太网采用广播方式发送数据包,所有成员人手一"包",不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。

互联网是无数子网络共同组成的一个巨型网络,很像想象上海和洛杉矶的电脑会在同一个子网络,这几乎是不可能的。

因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用"路由"方式发送。("路由"的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。

这就导致了"网络层"的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做"网络地址",简称"网址"。

于是,"网络层"出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。

网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。

4.2 IP协议

规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。

目前,广泛采用的是IP协议第四版,简称IPv4。这个版本规定,网络地址由32个二进制位组成。

习惯上,我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。

互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。比如,IP地址172.16.254.1,这是一个32位的地址,假定它的网络部分是前24位(172.16.254),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说172.16.254.2应该与172.16.254.1处在同一个子网络。

但是,问题在于单单从IP地址,我们无法判断网络部分。还是以172.16.254.1为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。

那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数"子网掩码"(subnet mask)。

所谓"子网掩码",就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。

知道"子网掩码",我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。

比如,已知IP地址172.16.254.1和172.16.254.233的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,结果都是172.16.254.0,因此它们在同一个子网络。

总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。

4.3 IP数据包

根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。

但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?

回答是不需要,我们可以把IP数据包直接放进以太网数据包的"数据"部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。

具体来说,IP数据包也分为"标头"和"数据"两个部分。

"标头"部分主要包括版本、长度、IP地址等信息,"数据"部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样。

IP数据包的"标头"部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。因此,理论上,一个IP数据包的"数据"部分,最长为65,515字节。前面说过,以太网数据包的"数据"部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。

4.4 ARP协议

关于"网络层",还有最后一点需要说明。

因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的(后文会解释),但是我们不知道它的MAC地址。

所以,我们需要一种机制,能够从IP地址得到MAC地址。

这里又可以分成两种情况。第一种情况,如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的"网关"(gateway),让网关去处理。

第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个"广播"地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。

总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。

五、传输层

5.1 传输层的由来

有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。

接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?

也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做"端口"(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。

"端口"是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。

"传输层"的功能,就是建立"端口到端口"的通信。相比之下,"网络层"的功能是建立"主机到主机"的通信。只要确定主机和端口,我们就能实现程序之间的交流。 因此,Unix系统就把主机+端口,叫做"套接字"(socket)。有了它,就可以进行网络应用程序开发了。

5.2 UDP协议

现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几乎就是在数据前面,加上端口号。

UDP数据包,也是由"标头"和"数据"两部分组成。

"标头"部分主要定义了发出端口和接收端口,"数据"部分就是具体的内容。然后,把整个UDP数据包放入IP数据包的"数据"部分,而前面说过,IP数据包又是放在以太网数据包之中的,所以整个以太网数据包现在变成了下面这样:

UDP数据包非常简单,"标头"部分一共只有8个字节,总长度不超过65,535字节,正好放进一个IP数据包。

5.3 TCP协议

UDP协议的优点是比较简单,容易实现,但是缺点是可靠性较差,一旦数据包发出,无法知道对方是否收到。

为了解决这个问题,提高网络可靠性,TCP协议就诞生了。这个协议非常复杂,但可以近似认为,它就是有确认机制的UDP协议,每发出一个数据包都要求确认。如果有一个数据包遗失,就收不到确认,发出方就知道有必要重发这个数据包了。

因此,TCP协议能够确保数据不会遗失。它的缺点是过程复杂、实现困难、消耗较多的资源。

TCP数据包和UDP数据包一样,都是内嵌在IP数据包的"数据"部分。TCP数据包没有长度限制,理论上可以无限长,但是为了保证网络的效率,通常TCP数据包的长度不会超过IP数据包的长度,以确保单个TCP数据包不必再分割。

六、应用层

应用程序收到"传输层"的数据,接下来就要进行解读。由于互联网是开放架构,数据来源五花八门,必须事先规定好格式,否则根本无法解读。

"应用层"的作用,就是规定应用程序的数据格式。

举例来说,TCP协议可以为各种各样的程序传递数据,比如Email、WWW、FTP等等。那么,必须有不同协议规定电子邮件、网页、FTP数据的格式,这些应用程序协议就构成了"应用层"。

这是最高的一层,直接面对用户。它的数据就放在TCP数据包的"数据"部分。因此,现在的以太网的数据包就变成下面这样。

至此,整个互联网的五层结构,自下而上全部讲完了。这是从系统的角度,解释互联网是如何构成的。 下一篇 ,我反过来,从用户的角度,自上而下看看这个结构是如何发挥作用,完成一次网络数据交换的。

MAC地址可不是世界上独一无二的,只是其散列足够大,使得在同一个子网中MAC地址碰巧相同的两块网卡几率很小很小而已。使用网络15年来,已经碰到过两次网卡MAC相同的事了。

而且MAC相同有两个方法解决:
1、网卡厂商提供有配置程序,可以直接改硬件MAC。如果使用二层网络系统就只能用此法解决,
2、各种操作系统也都提供伪造MAC地址的方式来解决三层系统中MAC冲突的问题。

比如,已知 IP 地址 172.16.254.1 和 172.16.254.233 的子网掩码都是 255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行 AND 运算,结果都是 172.16.254.0,因此它们在同一个子网络。

LZ 这里我不太懂哟 到底是怎么比呀 两个IP地址相减? 还是子网掩码分别减去他们的IP地址?

引用王丁的发言:

比如,已知 IP 地址 172.16.254.1 和 172.16.254.233 的子网掩码都是 255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行 AND 运算,结果都是 172.16.254.0,因此它们在同一个子网络。

LZ 这里我不太懂哟 到底是怎么比呀 两个IP地址相减? 还是子网掩码分别减去他们的IP地址?

IP地址与子网掩码进行“按位与”运算,得到网络地址。

第一个IP地址的网络地址:
172. 16.254.1
& 255.255.255.0
= 172. 16.254.0

第二个IP地址的网络地址:
172. 16.254.233
& 255.255.255.0
= 172. 16.254.0

所谓“掩码”,就是掩去主机部分,保留网络部分。

谢谢您,虽然从未学过这方面的知识,但这篇文章让我这样的外行人也看得津津有味,我想这和您翻译的作品一样,简洁明了,非常喜欢。黑客与画家,除了作品本身,详细的注释也非常有益,您的努力为作品增添了更多价值,值得推荐的好书!
感谢分享。

您的基础类文章真是叫人受益匪浅!
以前在公司写程序的时候,经常遇到完全不懂原理,问別人人家就会说"就那样用吧,别抠得太细!"的情况,想自己研究又忙得完全没有时间和心情。您的文章解除了我的好多根源上的疑惑,因此真是从心底感谢!
计算机网络在大学时也学过,那时要是就看到这篇文章,以它为概论,我一定会学得更深入细致些吧:)
您的文章都以最有效率的形式传达知识,使得大家接受起来非常容易。这是非常有价值的,和科技发展同属于生产力的一部分。因此不管是不是专业相关,每篇我都会仔细读个几遍,要是有以最快速度学到知识的途径,为何不去利用呢?
最后再次感谢,期待系列下一篇!

引用王丁的发言:

比如,已知 IP 地址 172.16.254.1 和 172.16.254.233 的子网掩码都是 255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行 AND 运算,结果都是 172.16.254.0,因此它们在同一个子网络。

LZ 这里我不太懂哟 到底是怎么比呀 两个IP地址相减? 还是子网掩码分别减去他们的IP地址?

ip地址172.16.254.233 换算成二进制格式: 10101100 00010000 11111110 11101001
掩码地址255.255.255.0 换算成二进制格式: 11111111 11111111 11111111 00000000
你把它们逐位进行&运算, 就可以将最后的8位全部变为0, 而前24位数字不变. 得到10101100 00010000 11111110 00000000, 即172.16.254.0

我们需要一种机制,能够从IP地址得到MAC地址。
这里又可以分成两种情况。第一种情况,如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的"网关"(gateway),让网关去处理。
-------------
其实,大多数情况都是这种“传送到两个子网络连接处的‘网关’”,我这里有几个疑问:
1. 是将IP packet传送到gateway吗?gateway在收到IP packet后会怎样处理?
2. 怎么知道gateway的地址?
3. IP路由表在这里扮演的角色?

不得不说,真的太佩服你了,解释的这么通俗易懂,之前看书看好多遍也不一定能够记住哪个协议是在哪一层,完全是靠记的,而现在,理解,真是不可同日而语。如果所有的老师都能像这样传道,那对学生来说会是多么大的福音啊
偶在图书馆看到了你翻译的《Joel on Software》,非常不错,借来看了

其实,大多数情况都是这种“传送到两个子网络连接处的‘网关’”,我这里有几个疑问:
1. 是将IP packet传送到gateway吗?gateway在收到IP packet后会怎样处理?
2. 怎么知道gateway的地址?
3. IP路由表在这里扮演的角色?

看到的这样的问题,重读了一次阮先生的教材,才知道阮先生没有把概念讲清楚。
在internet协议中,根本没有MAC地址这样的定义,操作系统层面只认识IP地址,MAC地址仅仅是在链路层(也就是网卡和交换机之间)起作用,系统程序没有必要知道MAC地址。当然从前还有支持纯以太网协议的程序,那样的系统程序就只认mac,不认ip了……我所接触过的这样的程序,大多都是用mac广播方式工作的。因为以太网协议功能太弱,要实现比较复杂的通信过程,难度不是一般的大。

知道这个前提后,再回答这3个问题:

1、操作系统中配置好了网关地址,凡是操作系统发现不在“掩码”范围内的地址,通通都发给gateway……不管gateway是否真的存在;gateway收到ip packet后,会根据自己内部的路由表寻找目的机器的方向……注意是方向,因为如果网关不能直接访问到目标机器,就把IP packet发给路由表上的规定方向的gateway;

2、gateway的地址是配置在本机操作系统中的,既可以手工配置,也可以有dhcp配置;而且gateway可以配置多个,也就是说,对不同非子网IP,可以指定出不同的方向;

3、IP路由表就是前面说的方向配置清单,典型的是静态(一经配置不再变化)。当然特殊网络环境下还有动态路由表,也就是gateway之间有配套的通信协议,能互相知会一声,自动形成路由表……这个叫动态路由协议。

"端口"是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。
=================================================================
在部署一个网站是,可以使用80,88啊什么的,这不是与“0到1023的端口被系统占用”相矛盾了吗?是不是我理解错了。

看几遍了 还是有一些疑惑:
1、客户机发出http请求时 DNS 解析域名 得到ip地址 ;发出 arp请求得到 mac 地址;是这样吗?
2、以太网标头 内容是 发送者与接收者的mac吗?还有哪些重要信息呢?
ip标头 的内容是 发送者与接收者的ip地址吗?

谁回答下 我菜鸟!

引用王丁的发言:
比如,已知 IP 地址 172.16.254.1 和 172.16.254.233 的子网掩码都是 255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行 AND 运算,结果都是 172.16.254.0,因此它们在同一个子网络。

LZ 这里我不太懂哟 到底是怎么比呀 两个IP地址相减? 还是子网掩码分别减去他们的IP地址?

就是每个地址都跟子网掩码经行AND运算,同样是1的记作1,不同的作0,然后比较两个结果,如果是相同的话,就是同一个子网。

这是由于 CSMA/CD 机制所算出来的! 在这个机制上面可算出若要侦测碰撞,则讯框总数据量最小得要有 64bytes ,那再扣除目的地址、来源地址、检查码 (前导码不算) 后, 就可得到数据量最小得要有 46bytes 了!也就是说,如果妳要传输的数据小于 46byes ,那我们的系统会主动的填上一些填充码, 以补齐至少 46bytes 的容量才行!
一般来说以太网Frame的总数据量最小是64bytes,但是扣除的18bytes是目标地址和源地址分别6bytes,类型或长度2byte(这些数据报头),还有校验和4bytes

看了您关于互联网协议的两篇文章,写的真好!带领读者站在一定的高度俯览整体面貌,剩下具体细节让读者自己去探索。有两个问题向您请教一下:
1.您是如何将这些东西从整体上把握地如此清晰的。之前我也看过几本书,但每次都是看的一点头绪都没有。书里面介绍了很多细节,但看完后一点概念都没有,完全被淹没在细节中,不能从大的方向上建立模型。
2.关于这方面内容,您是否有后续的文章来介绍,或是有什么好的书希望可以推荐一下。

引用曾四二的发言:
想请教下评价网络性能的一个重要参数:带宽。 总搞不明白这个词的意思。当说带宽为100Mbps的时候,意思是什么? 这个数据是怎么得到的。哪些事物会影响到带宽的大小?

带宽,就是网络设备向通信信道中发送信息的速率,比如每秒钟我的计算机向光缆中发送100M个bit,那么我们可以说这个光缆的带宽是100Mbps(per second)注意,bit流失串行发送的,并不是线越宽,带宽就越大。
既然知道了带宽的定义,那么:带宽的影响因素有很多,你可以google一下

引用new hander的发言:
??? 想确认下,在同一子网内, 是在IP地址中全部写入 1,进行广播,然后比较MAC地址,还是 在MAC地址中全部写入1,进行广播,然后比较IP????

据我的判断,有两种广播形式,不知道理解的对不对:
1,在本地子网广播,也就是在自己所在的子网广播,这样的广播地址应该是与mac地址相关的,也就是mac地址设为全1
2,从本地向外网广播,这样的话,应该是把那个网络的主机部分设为全1,这里用到了ip地址,这个包是发往网关的,是由网关代替你广播的 网关收到主机ip全1的包后知道这是一个向其子网发送的广播包,这样,对,就这样了。。。。。

1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的"标头",找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做"广播"(broadcasting)。

这里有个小疑问:mac地址不是唯一的吗?为什么会相同?

引用王丁的发言:

比如,已知 IP 地址 172.16.254.1 和 172.16.254.233 的子网掩码都是 255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行 AND 运算,结果都是 172.16.254.0,因此它们在同一个子网络。

LZ 这里我不太懂哟 到底是怎么比呀 两个IP地址相减? 还是子网掩码分别减去他们的IP地址?

就是把IP地址和掩码都转换成二进制,然后在两个32位的相同位上进行and运算。二进制and运算就是1&1=1,1&0=0,0&1=0,0&0=0

之前学习网络都是啃大砖头,总感觉并不是很懂,感觉是雾里看花,现在看了这篇,作者真的是深入浅出,虽然有些细节比较模糊,但是作为一个提纲挈领的文章,对细节的舍去是无法避免的。作者用简介明了的语言把整体讲得很清晰。当年学习时如果是看着这篇文章,再去一层一层的深入学习,估计会有更深的理解,而不是当时的雾里看花了。
很感谢您。

第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个"广播"地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。

总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了

-- 请问,如果这里根据ip查找mac需要"广播",mac地址在同一个子网内也需要“广播”方式查找对应的机器。 为什么还要查mac,直接在这个子网内用ip地址查到机器不就好了么?

第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个"广播"地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。

总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了

-- 请问,如果这里根据ip查找mac需要"广播",mac地址在同一个子网内也需要“广播”方式查找对应的机器。 为什么还要查mac,直接在这个子网内用ip地址查到机器不就好了么?

我的一些不成熟的理解。

你说的“根据ip地址直接发送给目标主机”理论上是可行的,但是现有的链路层设备是没有ip地址这个概念的,所以需要查到mac地址后再发给目标主机。
由于历史原因,mac地址先出现,后来发现它并不能解决所有问题,所以又发明了ip地址来解决问题。
所以,如果历史反过来,一开始就使用的是 IP 地址,而不是 MAC 地址,那么有可能实现整个网络通信过程只使用一种地址(即ip地址)。