This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

Download Microsoft Edge More info about Internet Explorer and Microsoft Edge

This document lists a set of policies that you should apply when adding or updating a port recipe. It is intended to serve the role of Debian's Policy Manual , Homebrew's Maintainer Guidelines , and Homebrew's Formula Cookbook .

PR Structure

Make separate Pull Requests per port

Whenever possible, separate changes into multiple PRs. This makes them significantly easier to review and prevents issues with one set of changes from holding up every other change.

Avoid trivial changes in untouched files

For example, avoid reformatting or renaming variables in portfiles that otherwise have no reason to be modified for the issue at hand. However, if you need to modify the file for the primary purpose of the PR (updating the library), then obviously beneficial changes like fixing typos are appreciated!

Check names against other repositories

A good service to check many at once is Repology . If the library you are adding could be confused with another one, consider renaming to make it clear. We prefer when names are longer and/or unlikely to conflict with any future use of the same name. If the port refers to a library on GitHub, a good practice is to prefix the name with the organization if there is any chance of confusion.

Use GitHub Draft PRs

GitHub Draft PRs are a great way to get CI or human feedback on work that isn't yet ready to merge. Most new PRs should be opened as drafts and converted to normal PRs once the CI passes.

For more information about GitHub Draft PRs, see Introducing draft pull requests .

Portfiles

Avoid deprecated helper functions

At this time, the following helpers are deprecated:

  • vcpkg_extract_source_archive_ex() should be replaced by the supported overload of vcpkg_extract_source_archive() (with ARCHIVE )
  • The deprecated overload of vcpkg_extract_source_archive() without ARCHIVE should be replaced by the supported overload with ARCHIVE .
  • vcpkg_apply_patches() should be replaced by the PATCHES arguments to the "extract" helpers (e.g. vcpkg_from_github() )
  • vcpkg_build_msbuild() should be replaced by vcpkg_install_msbuild()
  • vcpkg_copy_tool_dependencies() should be replaced by vcpkg_copy_tools()
  • vcpkg_configure_cmake should be replaced by vcpkg_cmake_configure() after removing PREFER_NINJA
  • vcpkg_build_cmake should be replaced by vcpkg_cmake_build()
  • vcpkg_install_cmake should be replaced by vcpkg_cmake_install()
  • vcpkg_fixup_cmake_targets should be replaced by vcpkg_cmake_config_fixup
  • Some of the replacement helper functions are in "tools ports" to allow consumers to pin their behavior at specific versions, to allow locking the behavior of the helpers at a particular version. Tools ports need to be added to your port's "dependencies" , like so:

    "name": "vcpkg-cmake", "host": true "name": "vcpkg-cmake-config", "host": true

    Avoid excessive comments in portfiles

    Ideally, portfiles should be short, simple, and as declarative as possible. Remove any boiler plate comments introduced by the create command before submitting a PR.

    Ports must not be path dependent

    Ports must not change their behavior based on which ports are already installed in a form that would change which contents that port installs. For example, given:

    > vcpkg install a
    > vcpkg install b
    > vcpkg remove a
    
    > vcpkg install b
    

    the files installed by b must be the same, regardless of influence by the previous installation of a. This means that ports must not try to detect whether something is provided in the installed tree by another port before taking some action. A specific and common cause of such "path dependent" behavior is described below in "When defining features, explicitly control dependencies."

    Unique port attribution rule

    In the entire vcpkg system, no two ports a user is expected to use concurrently may provide the same file. If a port tries to install a file already provided by another file, installation will fail. If a port wants to use an extremely common name for a header, for example, it should place those headers in a subdirectory rather than in include.

    Add CMake exports in an unofficial- namespace

    A core design ideal of vcpkg is to not create "lock-in" for customers. In the build system, there should be no difference between depending on a library from the system, and depending on a library from vcpkg. To that end, we avoid adding CMake exports or targets to existing libraries with "the obvious name", to allow upstreams to add their own official CMake exports without conflicting with vcpkg.

    To that end, any CMake configs that the port exports, which are not in the upstream library, should have unofficial- as a prefix. Any additional targets should be in the unofficial::<port>:: namespace.

    This means that the user should see:

  • find_package(unofficial-<port> CONFIG) as the way to get at the unique-to-vcpkg package
  • unofficial::<port>::<target> as an exported target from that port.
  • Examples:

  • brotli creates the unofficial-brotli package, producing target unofficial::brotli::brotli.
  • Each port has to provide a file named copyright in the folder ${CURRENT_PACKAGES_DIR}/share/${PORT}.

    Many ports are using this code to install a copyright file:

    file(INSTALL "${SOURCE_PATH}LICENSE" DESTINATION "${CURRENT_PACKAGES_DIR}/share/${PORT}" RENAME copyright)
    

    This is discouraged in favour of vcpkg_install_copyright(). New ports should use vcpkg_install_copyright() instead. However, it is still valid for existing ports to use something like the code above. You may replace this with vcpkg_install_copyright but you don't have to.

    vcpkg_install_copyright also includes the functionallity to handle multiple copyright files. See its documentation for more info.

    Features

    Do not use features to implement alternatives

    Features must be treated as additive functionality. If port[featureA] installs and port[featureB] installs, then port[featureA,featureB] must install. Moreover, if a second port depends on [featureA] and a third port depends on [featureB], installing both the second and third ports should have their dependencies satisfied.

    Libraries in this situation must choose one of the available options as expressed in vcpkg, and users who want a different setting must use overlay ports at this time.

    Existing examples we would not accept today retained for backwards compatibility:

  • libgit2, libzip, open62541 all have features for selecting a TLS or crypto backend. curl has different crypto backend options but allows selecting between them at runtime, meaning the above tenet is maintained.
  • darknet has opencv2, opencv3, features to control which version of opencv to use for its dependencies.
  • A feature may engage preview or beta functionality

    Notwithstanding the above, if there is a preview branch or similar where the preview functionality has a high probability of not disrupting the non-preview functionality (for example, no API removals), a feature is acceptable to model this setting.

    Examples:

  • The Azure SDKs (of the form azure-Xxx) have a public-preview feature.
  • imgui has an experimental-docking feature which engages their preview docking branch which uses a merge commit attached to each of their public numbered releases.
  • Default features should enable behaviors, not APIs

    If a consumer is depending directly upon a library, they can list out any desired features easily (library[feature1,feature2]). However, if a consumer does not know they are using a library, they cannot list out those features. If that hidden library is like libarchive where features are adding additional compression algorithms (and thus behaviors) to an existing generic interface, default features offer a way to ensure a reasonably functional transitive library is built even if the final consumer doesn't name it directly.

    If the feature adds additional APIs (or executables, or library binaries) and doesn't modify the behavior of existing APIs, it should be left off by default. This is because any consumer which might want to use those APIs can easily require it via their direct reference.

    If in doubt, do not mark a feature as default.

    Do not use features to control alternatives in published interfaces

    If a consumer of a port depends on only the core functionality of that port, with high probability they must not be broken by turning on the feature. This is even more important when the alternative is not directly controlled by the consumer, but by compiler settings like /std:c++17 / -std=c++17.

    Existing examples we would not accept today retained for backwards compatibility:

  • redis-plus-plus[cxx17] controls a polyfill but does not bake the setting into the installed tree.
  • ace[wchar] changes all APIs to accept const wchar_t* rather than const char*.
  • A feature may replace polyfills with aliases provided that replacement is baked into the installed tree

    Notwithstanding the above, ports may remove polyfills with a feature, as long as:

  • Turning on the feature changes the polyfills to aliases of the polyfilled entity
  • The state of the polyfill is baked into the installed headers, such that ABI mismatch "impossible" runtime errors are unlikely
  • It is possible for a consumer of the port to write code which works in both modes, for example by using a typedef which is either polyfilled or not
  • Example:

  • abseil[cxx17] changes absl::string_view to a replacement or std::string_view; the patch implements the baking requirement.
  • If it's critical to expose the underlying alternatives, we recommend providing messages at build time to instruct the user on how to copy the port into a private overlay:

    set(USING_DOG 0)
    message(STATUS "This version of LibContoso uses the Kittens backend. To use the Dog backend instead, create an overlay port of this with USING_DOG set to 1 and the `kittens` dependency replaced with `dog`.")
    message(STATUS "This recipe is at ${CMAKE_CURRENT_LIST_DIR}")
    message(STATUS "See the overlay ports documentation at https://github.com/microsoft/vcpkg/blob/master/docs/specifications/ports-overlay.md")
    

    Build Techniques

    Do not use vendored dependencies

    Do not use embedded copies of libraries. All dependencies should be split out and packaged separately so they can be updated and maintained.

    Prefer using CMake

    When multiple buildsystems are available, prefer using CMake. Additionally, when appropriate, it can be easier and more maintainable to rewrite alternative buildsystems into CMake using file(GLOB) directives.

    Examples: abseil

    Choose either static or shared binaries

    By default, vcpkg_cmake_configure() will pass in the appropriate setting for BUILD_SHARED_LIBS, however for libraries that don't respect that variable, you can switch on VCPKG_LIBRARY_LINKAGE:

    string(COMPARE EQUAL "${VCPKG_LIBRARY_LINKAGE}" "static" KEYSTONE_BUILD_STATIC)
    string(COMPARE EQUAL "${VCPKG_LIBRARY_LINKAGE}" "dynamic" KEYSTONE_BUILD_SHARED)
    vcpkg_cmake_configure(
        SOURCE_PATH ${SOURCE_PATH}
        OPTIONS
            -DKEYSTONE_BUILD_STATIC=${KEYSTONE_BUILD_STATIC}
            -DKEYSTONE_BUILD_SHARED=${KEYSTONE_BUILD_SHARED}
    

    When defining features, explicitly control dependencies

    When defining a feature that captures an optional dependency, ensure that the dependency will not be used accidentally when the feature is not explicitly enabled.

    set(CMAKE_DISABLE_FIND_PACKAGE_ZLIB ON)
    set(CMAKE_REQUIRE_FIND_PACKAGE_ZLIB OFF)
    if ("zlib" IN_LIST FEATURES)
      set(CMAKE_DISABLE_FIND_PACKAGE_ZLIB OFF)
      set(CMAKE_REQUIRE_FIND_PACKAGE_ZLIB ON)
    endif()
    vcpkg_cmake_configure(
      SOURCE_PATH ${SOURCE_PATH}
      OPTIONS
        -DCMAKE_DISABLE_FIND_PACKAGE_ZLIB=${CMAKE_DISABLE_FIND_PACKAGE_ZLIB}
        -DCMAKE_REQUIRE_FIND_PACKAGE_ZLIB=${CMAKE_REQUIRE_FIND_PACKAGE_ZLIB}
    

    The snippet below using vcpkg_check_features() is equivalent.

    vcpkg_check_features(OUT_FEATURE_OPTIONS FEATURE_OPTIONS
      FEATURES
        "zlib"    CMAKE_REQUIRE_FIND_PACKAGE_ZLIB
      INVERTED_FEATURES
        "zlib"    CMAKE_DISABLE_FIND_PACKAGE_ZLIB
    vcpkg_cmake_configure(
        SOURCE_PATH ${SOURCE_PATH}
        OPTIONS
          ${FEATURE_OPTIONS}
    

    ZLIB in the snippet is case-sensitive. For more information, see the CMAKE_DISABLE_FIND_PACKAGE_<PackageName> and CMAKE_REQUIRE_FIND_PACKAGE_<PackageName> documentation.

    A lib is considered conflicting if it does any of the following:

  • Define main
  • Define malloc
  • Define symbols that are also declared in other libraries
  • Conflicting libs are typically by design and not considered a defect. Because some build systems link against everything in the lib directory, these should be moved into a subdirectory named manual-link.

    Manifests and CONTROL files

    When adding a new port, use the new manifest syntax for defining a port; you may also change over to manifests when modifying an existing port. You may do so easily by running the vcpkg format-manifest command, which will convert existing CONTROL files into manifest files. Do not convert CONTROL files that have not been modified.

    Versioning

    Follow common conventions for the "version" field

    For a full explanation of our conventions, see our versioning documentation.

    Update the "port-version" field in the manifest file of any modified ports

    vcpkg uses this field to determine whether a given port is out-of-date and should be changed whenever the port's behavior changes.

    Our convention is to use the "port-version" field for changes to the port that don't change the upstream version, and to reset the "port-version" back to zero when an update to the upstream version is made.

    For Example:

  • Zlib's package version is currently 1.2.1, with no explicit "port-version" (equivalent to a "port-version" of 0).
  • You've discovered that the wrong copyright file has been deployed, and fixed that in the portfile.
  • You should update the "port-version" field in the manifest file to 1.
  • See the versioning documentation for more information.

    Update the version files in versions/ of any modified ports

    vcpkg uses a set of metadata files to power its versioning feature. These files are located in the following locations:

  • ${VCPKG_ROOT}/versions/baseline.json, (this file is common to all ports) and
  • ${VCPKG_ROOT}/versions/${first-letter-of-portname}-/${portname}.json (one per port).
  • For example, for zlib the relevant files are:

  • ${VCPKG_ROOT}/versions/baseline.json
  • ${VCPKG_ROOT}/versions/z-/zlib.json
  • We expect that each time you update a port, you also update its version files.

    The recommended method to update these files is to run the x-add-version command, e.g.:

    vcpkg x-add-version zlib
    

    If you're updating multiple ports at the same time, instead you can run:

    vcpkg x-add-version --all
    

    to update the files for all modified ports at once.

    These commands require you to have committed your changes to the ports before running them. The reason is that the Git SHA of the port directory is required in these version files. But don't worry, the x-add-version command will warn you if you have local changes that haven't been committed.

    For more information, see the Versioning reference and Creating registries.

    Patching

    vcpkg is a packaging solution, not the ultimate owners of the components that we deploy. We do need to apply patches in some cases to improve compatibility of components with platforms, or compatibility of components with each other.

  • We want to avoid patches that:
  • upstream would disagree with
  • cause vulnerabilities or crashes
  • we are incapable of maintaining across upstream version updates
  • are large enough to cause license entanglement with the vcpkg repository itself
  • Notify upstream owners for upstream relevant patches

    If a patch could possibly be useful by upstream, upstream must be notified of the patch's content. (Patches that apply vcpkg-specific behavior unrelated to upstream, such as devendoring a dependency, don't require notification.)

    To avoid situations where upstream disagrees with the patch, we will wait at least 30 days to apply such patches.

    We will skip this waiting period if we have high confidence that the change is correct. Examples of high confidence patches include, but are not limited to:

  • Upstream's acceptance as a patch (for example, backporting a specific change from a pull request upstream has merged).
  • Adding missing #includes.
  • Small and obvious product code fixes (for example, initializing an uninitialized variable).
  • Disabling irrelevant-in-vcpkg components of the build such as tests or examples.
  • Prefer options over patching

    It is preferable to set options in a call to vcpkg_configure_xyz() over patching the settings directly.

    Common options that allow you to avoid patching:

  • [MSBUILD] <PropertyGroup> settings inside the project file can be overridden via /p: parameters
  • [CMAKE] Calls to find_package(XYz) in CMake scripts can be disabled via -DCMAKE_DISABLE_FIND_PACKAGE_XYz=ON
  • [CMAKE] Cache variables (declared as set(VAR "value" CACHE STRING "Documentation") or option(VAR "Documentation" "Default Value")) can be overridden by just passing them in on the command line as -DVAR:STRING=Foo. One notable exception is if the FORCE parameter is passed to set(). For more information, see the CMake set documentation
  • Prefer patching over overriding VCPKG_<VARIABLE> values

    Some variables prefixed with VCPKG_<VARIABLE> have an equivalent CMAKE_<VARIABLE>. However, not all of them are passed to the internal package build (see implementation: Windows toolchain).

    Consider the following example:

    set(VCPKG_C_FLAGS "-O2 ${VCPKG_C_FLAGS}")
    set(VCPKG_CXX_FLAGS "-O2 ${VCPKG_CXX_FLAGS}")
    

    Using vcpkg's built-in toolchains this works, because the value of VCPKG_<LANG>_FLAGS is forwarded to the appropriate CMAKE_LANG_FLAGS variable. But, a custom toolchain that is not aware of vcpkg's variables will not forward them.

    Because of this, it is preferable to patch the buildsystem directly when setting CMAKE_<LANG>_FLAGS.

    Minimize patches

    When making changes to a library, strive to minimize the final diff. This means you should not reformat the upstream source code when making changes that affect a region. Also, when disabling a conditional, it is better to add a AND FALSE or && 0 to the condition than to delete every line of the conditional.

    Don't add patches if the port is outdated and updating the port to a newer released version would solve the same issue. vcpkg prefers updating ports over patching outdated versions unless the version bump breaks a considerable amount of dependent ports.

    This helps to keep the size of the vcpkg repository down as well as improves the likelihood that the patch will apply to future code versions.

    Do not implement features in patches

    The purpose of patching in vcpkg is to enable compatibility with compilers, libraries, and platforms. It is not to implement new features in lieu of following proper Open Source procedure (submitting an Issue/PR/etc).

    Do not build tests/docs/examples by default

    When submitting a new port, check for any options like BUILD_TESTS or WITH_TESTS or POCO_ENABLE_SAMPLES and ensure the additional binaries are disabled. This minimizes build times and dependencies for the average user.

    Optionally, you can add a test feature which enables building the tests, however this should not be in the Default-Features list.

    Enable existing users of the library to switch to vcpkg

    Do not add CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS

    Unless the author of the library is already using it, we should not use this CMake functionality because it interacts poorly with C++ templates and breaks certain compiler features. Libraries that don't provide a .def file and do not use __declspec() declarations simply do not support shared builds for Windows and should be marked as such with vcpkg_check_linkage(ONLY_STATIC_LIBRARY).

    Do not rename binaries outside the names given by upstream

    This means that if the upstream library has different names in release and debug (libx versus libxd), then the debug library should not be renamed to libx. Vice versa, if the upstream library has the same name in release and debug, we should not introduce a new name.

    Important caveat:

  • Static and shared variants often should be renamed to a common scheme. This enables consumers to use a common name and be ignorant of the downstream linkage. This is safe because we only make one at a time available.
  • If a library generates CMake integration files (foo-config.cmake), renaming must be done through patching the CMake build itself instead of simply calling file(RENAME) on the output archives/LIBs.

    Finally, DLL files on Windows should never be renamed post-build because it breaks the generated LIBs.

    Manifests

    We require that the manifest file be formatted. Use the following command to format all manifest files:

    > vcpkg format-manifest --all
    

    Triplets

    We are not accepting requests to add non-community triplets at this time. Promotion from community to full triplet status is primarily based on budget for the hardware to test such triplets and will be driven by metrics submitted by vcpkg to maximize the likelihood what people actually use is fully tested.

    We will add community triplets if:

  • It is demonstrated that people will actually use that community triplet; and,
  • we don't know that such a triplet is broken.
  • For example, we did not add a triplet in https://github.com/microsoft/vcpkg/pull/29034 because the author was just trying to "complete the set" rather than indicating they would actually use such a thing, and we did not add linux-dynamic until the patchelf solution to make the results relocatable was created.

    Useful implementation notes

    Portfiles are run in Script Mode

    While portfile.cmake's and CMakeLists.txt's share a common syntax and core CMake language constructs (aka "Scripting Commands"), portfiles run in "Script Mode", whereas CMakeLists.txt files run in "Project Mode". The most important difference between these two modes is that "Script Mode" does not have the concepts of "Toolchain", "Language" and "Target". Any behaviors, including scripting commands, which depend on these constructs (e.g. CMAKE_CXX_COMPILER, CMAKE_EXECUTABLE_SUFFIX, CMAKE_SYSTEM_NAME) will not be correct.

    Portfiles have direct access to variables set in the triplet file, but CMakeLists.txts do not (though there is often a translation that happens -- VCPKG_LIBRARY_LINKAGE versus BUILD_SHARED_LIBS).

    Portfiles and Project builds invoked by portfiles are run in different processes. Conceptually:

    +----------------------------+       +------------------------------------+
    | CMake.exe                  |       | CMake.exe                          |
    +----------------------------+       +------------------------------------+
    | Triplet file               | ====> | Toolchain file                     |
    | (x64-windows.cmake)        |       | (scripts/buildsystems/vcpkg.cmake) |
    +----------------------------+       +------------------------------------+
    | Portfile                   | ====> | CMakeLists.txt                     |
    | (ports/foo/portfile.cmake) |       | (buildtrees/../CMakeLists.txt)     |
    +----------------------------+       +------------------------------------+
    

    To determine the host in a portfile, the standard CMake variables are fine (CMAKE_HOST_WIN32).

    To determine the target in a portfile, the vcpkg triplet variables should be used (VCPKG_CMAKE_SYSTEM_NAME).

    See also our triplet documentation for a full enumeration of possible settings.