摘要:

锂离子电池已成为解决现代社会储能问题的最佳解决方案之一。然而,电池材料和器件开发都是复杂的多变量问题,传统的依赖研究人员进行实验的试错法在电池性能提升方面遇到了瓶颈。人工智能(AI)具有强大的高速、海量数据处理能力,是上述突破研究瓶颈的最具潜力的技术。其中,机器学习 (ML) 算法在评估多维数据变量和集合之间的组合关联方面的独特优势有望帮助研究人员发现不同因素之间的相互作用规律并阐明材料合成和设备制造的机制。本综述总结了锂离子电池传统研究方法遇到的各种挑战,并详细介绍了人工智能在电池材料研究、电池器件设计与制造、材料与器件表征、电池循环寿命与安全性评估等方面的应用。最重要的是,我们介绍了AI和ML在电池研究中面临的挑战,并讨论了它们应用的缺点和前景。我们相信,未来实验科学家、数学建模专家和AI专家之间更紧密的合作将极大地促进AI和ML方法用以解决传统方法难以克服的电池和材料问题。

Abstract:

Lithium-ion batteries (LIBs) have become one of the best solutions to the energy storage issue in modern society. However, the battery materials and device development are both complex, and involve multivariable problems. Traditional trial-and-error approach, which relies on researchers to conduct experiments, has encountered bottlenecks in the improvement of the battery performance. Artificial intelligence (AI) is the most potential technology to deal with this issue due to its powerful high-speed and capabilities of processing massive data. In particular, the capability of machine learning (ML) algorithms in assessing multidimensional data variables and discovering patterns in the sets are expected to assist researchers in discovering patterns and elucidating the mechanisms of material synthesis and device fabrication. This review summarizes various challenges encountered in traditional research methods of LIBs and introduces the applications of AI in battery material research, battery device design and manufacturing, material and device characterizations, and battery cycle life and safety assessment in detail. Most importantly, we present the challenges faced by AI and ML in battery research, and discuss the shortcomings and prospects of their applications. We believe that a closer collaboration among experimentalists, modeling specialists, and AI experts in the future will greatly facilitate AI and ML methods for solving battery and materials problems that are difficult to be solved by traditional methods.

Key words: lithium-ion battery, machine learning, materials characterization, battery manufacture, artificial intelligence

朱振威, 邱景义, 王莉, 曹高萍, 何向明, 王京, 张浩. 人工智能在锂离子电池研发中的应用[J]. 电化学, 2022, 28(12): 2219003.

Zhen-Wei Zhu, Jing-Yi Qiu, Li Wang, Gao-Ping Cao, Xiang-Ming He, Jing Wang, Hao Zhang. Application of Artificial Intelligence to Lithium-Ion Battery Research and Development[J]. Journal of Electrochemistry, 2022, 28(12): 2219003.

Walsh A. The quest for new functionality[J]. Nat. Chem., 2015, 7(4): 274-275. doi: 10.1038/nchem.2213 pmid: 25803462 Mistry A, Franco A A, Cooper S J, Roberts S A, Viswanathan V. How machine learning will revolutionize electrochemical sciences[J]. ACS Energy Lett., 2021, 6(4): 1422-1431. doi: 10.1021/acsenergylett.1c00194 pmid: 33869772 Vegge T, Tarascon J M, Edström K. Toward better and smarter batteries by combining AI with multisensory and self-healing approaches[J]. Adv. Energy Mater., 2021, 11(23): 2100362. doi: 10.1002/aenm.202100362 El-Bousiydy H, Lombardo T, Primo E N, Duquesnoy M, Morcrette M, Johansson P, Simon P, Grimaud A, Franco A A. What can text mining tell us about lithium-ion battery researchers’ habits?[J] Batter. Supercaps, 2021, 4(5): 758-766. doi: 10.1002/batt.202000288 Duquesnoy M, Lombardo T, Chouchane M, Primo E N, Franco AA. Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning[J]. J. Power Sources, 2020, 480: 229103. doi: 10.1016/j.jpowsour.2020.229103 Gao X L, Liu X H, He R, Wang M Y, Xie W L, Brandon N P, Wu B, Ling H P, Yang S C. Designed high-performance lithium-ion battery electrodes using a novel hybrid model-data driven approach[J]. Energy Storage Mater., 2021, 36: 435-458. Berecibar M. Machine-learning techniques used to accurately predict battery life[J]. Nature, 2019, 568(7752): 325-326. doi: 10.1038/d41586-019-01138-1 Li Y, Liu K, Foley A M, Zu-lke A, Berecibar M, Nanini- Maury E, Van Mierlo J, Hoster H E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renew. Sust. Energy Rev., 2019, 113: 109254. doi: 10.1016/j.rser.2019.109254 Rezvanizaniani S M, Liu Z C, Chen Y, Lee J. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J]. J. Power Sources, 2014, 256: 110-124. doi: 10.1016/j.jpowsour.2014.01.085 Chen C, Zuo Y X, Ye W K, Li X G, Deng Z, Ong S P. Critical review of machine learning of energy materials[J]. Adv. Energy Mater., 2020, 10(8): 1903242. doi: 10.1002/aenm.201903242 Gao T H, Lu W. Machine learning toward advanced energy storage devices and systems[J]. iScience, 2021, 24(1): 101936. doi: 10.1016/j.isci.2020.101936 Xu H Y, Zhu J E, Finegan D P, Zhao H B, Lu X K, Li W, Hoffman N, Bertei A, Shearing P, Bazant M Z. Guiding the design of heterogeneous electrode microstructures for Li-ion batteries: microscopic imaging, predictive modeling, and machine learning[J]. Adv. Energy Mater., 2021, 11(19): 2003908. doi: 10.1002/aenm.202003908 Li J G, Tu Y X, Liu R, Lu Y, Zhu X. Toward “on-demand” materials synthesis and scientific discovery through intelligent robots[J]. Adv. Sci., 2020, 7(7): 1901957. doi: 10.1002/advs.201901957 Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555. doi: 10.1038/s41586-018-0337-2 Severson K A, Attia P M, Jin N, Perkins N, Jiang B B, Yang Z, Chen M H, Aykol M, Herring P K, Fraggedakis D, Bazant M Z, Harris S J, Chueh W C, Braatz R D. Data-driven prediction of battery cycle life before capacity degradation[J]. Nat. Energy, 2019, 4(5): 383-391. doi: 10.1038/s41560-019-0356-8 Petrich L, Westhoff D, Feinauer J, Finegan D P, Daemi S R, Shearing P R, Schmidt V. Crack detection in lithium-ion cells using machine learning[J]. Comput. Mater. Sci., 2017, 136: 297-305. doi: 10.1016/j.commatsci.2017.05.012 Li S Q, Li J W, He H W, Wang H X. Lithium-ion battery modeling based on big data[M]. Editors: Yan J, Kaldellis J K, Campana P E, Energy Procedia, 2019, 159: 168-173. Russell S, Norvig P. Artificial intelligence a modern approach[M]. 4th ed. Hoboken, Pearson Education, Inc., 2020. Hastie T, Tibshirani R, Friedman J. The Elements of statistical learning[M]. 2nd ed. New York: Springer, 2017. Han J Q, Jentzen A, Weinan E. Solving high-dimensional partial differential equations using deep learning[J]. Proc. Natl. Acad. Sci. U. S. A., 2018, 115(34): 8505-8510. doi: 10.1073/pnas.1718942115 Qian E, Kramer B, Peherstorfer B, Willcox K. Lift & learn: physics-informed machine learning for large-scale nonlinear dynamical systems[J]. Phys. D, 2020, 406: 132401. doi: 10.1016/j.physd.2020.132401 Zhao H B, Storey B D, Braatz R D, Bazant M Z. Learning the physics of pattern formation from images[J]. Phys. Rev. Lett., 2020, 124(6): 060201. doi: 10.1103/PhysRevLett.124.060201 Rynne O, Dubarry M, Molson C, Nicolas E, Lepage D, Prébé A, Aymé-Perrot D, Rochefort D, Dollé M. Exploiting materials to their full potential, a Li-ion battery electrode formulation optimization study[J]. ACS Appl. Energy Mater., 2020, 3(3): 2935-2948. doi: 10.1021/acsaem.0c00015 Li J, Arbizzani C, Kjelstrup S, Xiao J, Xia Y Y, Yu Y, Yang Y, Belharouak I, Zawodzinski T, Myung S T, Raccichini R, Passerini S. Good practice guide for papers on batteries for the journal of power sources[J]. J. Power Sources, 2020, 452: 227824. doi: 10.1016/j.jpowsour.2020.227824 Arbizzani C, Yu Y, Li J, Xiao J, Xia Y Y, Yang Y, Santato C, Raccichini R, Passerini S. Good practice guide for papers on supercapacitors and related hybrid capacitors for the Journal of Power Sources[J]. J. Power Sources, 2020, 450: 227636. doi: 10.1016/j.jpowsour.2019.227636 Nakayama M, Kanamori K, Nakano K, Jalem R, Takeuchi I, Yamasaki H. Data-driven materials exploration for Li-ion conductive ceramics by exhaustive and informatics-aided computations[J]. Chem. Rec., 2019, 19(4): 771-778. doi: 10.1002/tcr.201800129 Jalem R, Nakayama M, Noda Y, Le T, Takeuchi I, Tateyama Y, Yamazaki H. A general representation scheme for crystalline solids based on voronoi-tessellation real feature values and atomic property data[J]. Sci. Technol. Adv. Mater., 2018, 19(1): 231-242. doi: 10.1080/14686996.2018.1439253 Isayev O, Fourches D, Muratov E N, Oses C, Rasch K, Tropsha A, Curtarolo S. Materials cartography: representing and mining materials space using structural and electronic fingerprints[J]. Chem. Mater., 2015, 27(3): 735-743. doi: 10.1021/cm503507h Rupp M, Tkatchenko A, Muller K R, Von Lilienfeld O A. Fast and accurate modeling of molecular atomization energies with machine learning[J]. Phys. Rev. Lett., 2012, 108: 058301. doi: 10.1103/PhysRevLett.108.058301 Schutt K T, Glawe H, Brockherde F, Sanna A, Muller K R, Gross E K U. How to represent crystal structures for machine learning: towards fast prediction of electronic properties[J]. Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 89(20): 205118. doi: 10.1103/PhysRevB.89.205118 Yang L S, Dacek S, Ceder G. Proposed definition of crystal substructure and substructural similarity[J]. Phys. Rev. B: Condens. Matter Mater. Phys., 2014, 90(5): 054102. doi: 10.1103/PhysRevB.90.054102 Sanchez-Lengeling B, Aspuru-Guzik A. Inverse molecular design using machine learning: generative models for matter engineering[J]. Science, 2018, 361(6400): 360-365. doi: 10.1126/science.aat2663 pmid: 30049875 Van Der Ven A, Deng Z, Banerjee S, Ong S P. Rechargeable alkali-ion battery materials: theory and computation[J]. Chem. Rev., 2020, 120(14): 6977-7019. doi: 10.1021/acs.chemrev.9b00601 pmid: 32022553 Behler J, Parrinello M, Generalized neural-network representation of high-dimensional potential-energy surfaces[J]. Phys. Rev. Lett., 2007, 98(14): 146401. doi: 10.1103/PhysRevLett.98.146401 Wang H, Zhang L F, Han J Q, Weinan E, DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics[J]. Comput. Phys. Commun., 2008, 228: 178-184. doi: 10.1016/j.cpc.2018.03.016 Unke O T, Chmiela S, Sauceda H E, Gastegger M, Poltavsky I, Schutt K Y, Tkatchenko A, MullerK R. Machine learning force fields[J]. Chem. Rev., 2021, 121(16): 10142-10186. doi: 10.1021/acs.chemrev.0c01111 pmid: 33705118 Bhowmik A, Castelli I E, Garcia-Lastra J M, Jørgensen P B, Winther O, Vegge T. A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning[J]. Energy Storage Mater., 2019, 21: 446-456. Häse F, Roch L M, Aspuru-Guzik A. Next-generation experimentation with self-driving laboratories[J]. Trends Chem., 2019, 1(3): 282-291. doi: 10.1016/j.trechm.2019.02.007 Dave A, Mitchell J, Kandasamy K, Wang H, Burke S, Paria B, PÓczos B, Whitacre J, Viswanathan V. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning[J]. Cell Reports Phys. Sci., 2020, 1(12): 100264. doi: 10.1016/j.xcrp.2020.100264 Fitzhugh W, Ghen X, Wang Y C, Ye L H, Li X L. Solid-electrolyte-interphase design in constrained ensemble for solid-state batteries[J]. Energy Environ. Sci., 2021, 14(8): 4574-4583 doi: 10.1039/D1EE00754H Kim E, Huang K, Saunders A, McCallum A, Ceder G, Olivetti E. Materials synthesis insights from scientific literature via text extraction and machine learning[J]. Chem. Mater., 2017, 29(21): 9436-9444. doi: 10.1021/acs.chemmater.7b03500 Jain A, Hautier G, Ong S P, Persson K. New opportunities for materials informatics: resources and data mining techniques for uncovering hidden relationships[J]. J. Mater. Res., 2016, 31(8): 977-994. doi: 10.1557/jmr.2016.80 Thon C, Finke B, Kwade A, Schilde C. Artificial intelligence in process engineering[J]. Adv. Intell. Syst., 2021, 3(6): 2000261. doi: 10.1002/aisy.202000261 Evans R, Boreland M. A Multivariate approach to utilizing mid-sequence process control data[C]. 2015 IEEE 42nd Photovolt. Spec. Conf., PVSC 2015, December 17, 2015. Turetskyy A, Thiede S, Thomitzek M, von Drachenfels N, Pape T, Herrmann C. Toward data-driven applications in lithium-ion battery cell manufacturing[J]. Energy Technol., 2020, 8(2): 1900136. doi: 10.1002/ente.201900136 Cunha R P, Lombardo T, Primo E N, Franco A A. Artificial intelligence investigation of NMC cathode manufacturing parameters interdependencies[J]. Batter. Supercaps, 2020, 3(1): 60-67. doi: 10.1002/batt.201900135 Lombardo T, Hoock J B, Primo E N, Ngandjong A C, Duquesnoy M, Franco A A. Accelerated optimization methods for force-field parametrization in battery electrode manufacturing modeling[J]. Batter. Supercaps, 2020, 3(8): 721-730. doi: 10.1002/batt.202000049 Mubarok K. Redefining industry 4.0 and its enabling technologies[J]. J. Phys.: Conf. Ser., 2020, 1569: 032025. doi: 10.1088/1742-6596/1569/3/032025 Lin C C, Deng D J, Chen Z Y, Chen K C. Key design of driving industry 4.0: joint energy-efficient deployment and scheduling in group-based industrial wireless sensor networks[J]. IEEE Commun. Mag., 2016, 54(10): 46-52. Szymanski N J, Bartel C J, Zeng Y, Tu Q S, Ceder G. Probabilistic deep learning approach to automate the interpretation of multi-phase diffraction spectra[J]. Chem. Mater., 2021, 33(11): 4204-4215. doi: 10.1021/acs.chemmater.1c01071 Yang X G, Kahnt M, Bruckner D, Schropp A, Fam Y, Becher J, Grunwaldt J D, Sheppard T L, Schroer C G. Tomographic reconstruction with a generative adversarial network[J]. J. Synchrotron Radiat., 2020, 27: 486-493. doi: 10.1107/S1600577520000831 pmid: 32153289 Dixit M B, Verma A, Zaman W, Zhong X L, Kenesei P, Park J S, Almer J, Mukherjee P P, Hatzell K B. Synchrotron imaging of pore formation in Li metal solid-state batteries aided by machine learning[J]. ACS Appl. Energy Mater., 2020, 3(10): 9534-9542. doi: 10.1021/acsaem.0c02053 Furat O, Finegan D P, Diercks D, Usseglio-Viretta F, Smith K, Schmidt V. Mapping the architecture of single electrode particles in 3D, using electron backscatter diffraction and machine learning segmentation[J]. J. Power Sources, 2021, 483: 229148. doi: 10.1016/j.jpowsour.2020.229148 LaBonte T, Martinez C, Roberts S A. We know where we don’t know: 3D bayesian CNNs for credible geometric uncertainty[J]. 2019, arXiv:10.2172/1605518. Jiang Z S, Li J Z, Yang Y, Mu L Q, Wei C X, Yu X Q, Pianetta P, Zhao K J, Cloetens P, Lin F, Liu Y J. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes[J]. Nat. Commun., 2020, 11(1): 2310. doi: 10.1038/s41467-020-16233-5 pmid: 32385347 Tian F, Ben LB, Yu H Y, Ji H X, Zhao W W, Liu Z Z, Monteiro R, Ribas R M, Zhu Y M, Huang M J. Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 layered cathode material[J]. Nano Energy, 2022, 98: 107222. doi: 10.1016/j.nanoen.2022.107222 Li J Z, Sharma N, Jiang Z S, Yang Y, Monaco F, Xu Z R, Hou D, Ratner D, Pianetta P, Cloetens P, Lin F, Zhao K J, Liu Y J. Dynamics of particle network in composite battery cathodes[J]. Science, 2022, 376(6592): 517-521. doi: 10.1126/science.abm8962 pmid: 35482882 Wang H S, Ji Y J, Li Y Y. Simulation and design of energy materials accelerated by machine learning[J]. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2020, 10(1): e1421. Badmos O, Kopp A, Bernthaler T, Schneider G. Image-based defect detection in lithium-ion battery electrode using convolutional neural networks[J]. J. Intell. Manuf., 2020, 31(4): 885-897. doi: 10.1007/s10845-019-01484-x Nguyen T T, Villanova J, Su Z L, Tucoulou R, Fleutot B, Delobel B, Delacourt C, Demortiere A. 3D Quantification of microstructural properties of LiNi 0.5 Mn 0.3 Co 0.2 O 2 high-energy density electrodes by X-ray holographic nano-tomography[J]. Adv. Energy Mater., 2021, 11(8): 2003529. doi: 10.1002/aenm.202003529 Lu X K, Bertei A, Finegan D P, Tan C, Daemi S R, Weaving J S, O’Regan K B, Heenan T M M, Hinds G, Kendrick E, Brett D J L, Shearing P R. 3D Microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling[J]. Nat. Commun., 2020, 11(1): 2079. doi: 10.1038/s41467-020-15811-x pmid: 32350275 Lu X K, Daemi S R, Bertei A, Kok M D R, O’Regan K B, Rasha L, Park J, Hinds G, Kendrick E, Brett D J L, Shearing P R. Microstructural evolution of battery electrodes during calendaring[J]. Joule, 2020, 4(12): 2746-2768. doi: 10.1016/j.joule.2020.10.010 Li Q, Yi T C, Wang X L, Pan H, Y Quan B G, Liang T J, Guo X X, Yu X Q, Wang H, Huang X J, Chen L Q, Li H. In - situ visualization of lithium plating in all-solid-state lithium-metal battery[J]. Nano Energy, 2019, 63: 103895. doi: 10.1016/j.nanoen.2019.103895 Kazyak E, Garcia-Mendez R, LePage W S, Sharafi A, Davis A L, Sanchez A J, Chen K H, Haslam C, Sakamoto J, Dasgupta N P. Li Penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility[J]. Matter, 2020, 2(4): 1025-1048. doi: 10.1016/j.matt.2020.02.008 Lombardo T, Duquesnoy M, El-Bouysidy H aAren F, Gallo-Bueno A, Jorgensen P B, Bhowmik A, Demortiere A, Ayerbe E, Alcaide F, Reynaud M, Carrasco J, Grimaud A, Zhang C, Vegge T, Johansson, Franco A A. Artificial intelligence applied to battery research: hype or reality[J]. Chem. Rev., 2022, 122(12): 10899-10969 doi: 10.1021/acs.chemrev.1c00108 Li W, Zhu J E, Xia Y, Gorji M B, Wierzbicki T. Data-driven safety envelope of lithium-ion batteries for electric vehicles[J]. Joule, 2019, 3(11): 2703-2715. doi: 10.1016/j.joule.2019.07.026 Zhu S, Zhao N Q, Sha J W. Predicting battery life with early cyclic data by machine learning[J]. Energy Storage, 2019, 1(6): e98. Harlow J E, Ma X M, Li J, Logan E, Liu Y L, Zhang N, Ma L, Glazier S L, Cormier M M E, Genovese M, Buteau S, Cameron A, Stark J E, Dahn J R. A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies[J]. J. Electrochemist. Soc., 2019, 166(13): A3031-3044. doi: 10.1149/2.0981913jes Attia P M, Grover A, Jin N, Severson K A, Markov T M, Liao Y H, Chen M H, Cheong B, Perkins N, Yang Z, Herring P K, Aykol M, Harris S J, Braatz R D, Ermon S, Chueh W C. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397-402. doi: 10.1038/s41586-020-1994-5 Bhowmik A, Vegge T. AI fast track to battery fast charge[J]. Joule, 2020, 4(4): 717-719. doi: 10.1016/j.joule.2020.03.016 Hoffman M W, Shahriari B, De Freitas N. On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning[C]//Procedings of the 17th International Conference on Articial Intelligence and Statistics (AISTATs) 2014, Raykjavir, Iceland, JMLR: W&cp, volume 33: 365-374. Choi Y, Ryu S, Park K, Kim H. Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles[J]. IEEE Access, 2019, 7: 75143-75152. doi: 10.1109/ACCESS.2019.2920932 Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. J. Power Sources, 2013, 241: 680-689. doi: 10.1016/j.jpowsour.2013.05.040 Xiong R, Li L L, Li Z R, Yu Q Q, Mu H. An electrochemical model based degradation state identification method of lithium-ion battery for all-climate electric vehicles application[J]. Appl. Energy, 2018, 219: 264-275. doi: 10.1016/j.apenergy.2018.03.053 De Sutter L, Firouz Y, De Hoog J, Omar N, Van Mierlo J. Battery aging assessment and parametric study of lithium-ion batteries by means of a fractional differential model[J]. Electrochemist. Acta, 2019, 305: 24-36. Feng F, Teng S L, Liu K L, Xie J L, Xie Y, Liu B, Li K. Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural- network model[J]. J. Power Sources, 2020, 455: 227935. doi: 10.1016/j.jpowsour.2020.227935 Chen X, Ye L H, Wang Y, Li X. Beyond expert-level performance prediction for rechargeable batteries by unsupervised machine learning[J]. Adv. Intell. Syst., 2019, 1(8): 1900102. doi: 10.1002/aisy.201900102 Zhou Z K, Duan B, Kang Y Z, Shang Y L, Cui N X, Chang L, Zhang C H. An efficient screening method for retired lithium-ion batteries based on support vector machine[J]. J. Cleaner Prod., 2020, 267: 121882. doi: 10.1016/j.jclepro.2020.121882 Billy W, W Dhammika W, Shichun Y, Xinhua L. Battery digital twins: perspectives on the fusion of models, data and artificial intelligence for smart battery management systems[J]. Energy and AI, 2020: 100016 Jiao J Y, Lai G M, Zhao L, Lu J Z, Li Q D, Xu X Q, Jiang Y, He Y B, Ouyang C Y, Pan F, Li H, Zheng J X. Self-healing mechanism of lithium in lithium metal[J]. Adv. Sci., 2022, 9(12): 2105574. doi: 10.1002/advs.202105574 Liang C. A review of the recent progress in battery informatics[J]. NPJ Comput. Mater., 2022, 8(1): 33. doi: 10.1038/s41524-022-00713-x 谯渭川, 李芳儒, 肖瑾林, 屈丽娟, 赵晓, 张梦, 庞春雷, 李子坤, 任建国, 贺雪琴. 硅氧材料的膨胀性能研究和改善 [J]. 电化学, 2022, 28(5): 2108121-. 王加义, 郭胜楠, 王新, 谷林, 苏东. 锂离子电池高镍层状氧化物正极结构失效机制 [J]. 电化学, 2022, 28(2): 2108431-. 李吉利, 李晔飞, 刘智攀. 电化学理论模拟方法的发展及其在铂基燃料电池中的应用 [J]. 电化学, 2022, 28(2): 2108511-. 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新 [J]. 电化学, 2022, 28(12): 2219011-. 侯廷政, 陈翔, 蒋璐, 唐城. 当前和下一代锂离子电池电解液的原子尺度微观认识和研究进展 [J]. 电化学, 2022, 28(11): 2219007-. 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用 [J]. 电化学, 2022, 28(11): 2219002-. 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化 [J]. 电化学, 2022, 28(1): 2006131-. 蔡雪凡, 孙升. 多孔电极电池的循环伏安法模拟 [J]. 电化学, 2021, 27(6): 646-657. 李丽娟, 朱振东, 代娟, 王蓉蓉, 彭文. 锂离子电池正极材料Li[Ni x Co y Mn z ]O 2 ( x = 0.6, 0.85)相变对比 [J]. 电化学, 2021, 27(4): 405-412. 彭依, 张伟, 左防震, 吕浩莹, 洪凯骏. 二硒化钼纳米球储锂和储镁的性能和机理研究 [J]. 电化学, 2021, 27(4): 456-464. 周莉, 吴勰, 薛照明. 热塑性聚氨酯基聚合物电解质的制备与表征 [J]. 电化学, 2021, 27(4): 439-448. 梁振浪, 杨耀, 李豪, 刘丽英, 施志聪. 基于不同前驱体制备的硬碳负极材料的储锂性能 [J]. 电化学, 2021, 27(2): 177-184. 侯旭, 何欣, 李劼. “Water-in-salt”聚合物电解质制备及其电化学性能研究 [J]. 电化学, 2021, 27(2): 202-207.