基于“惯容-弹簧-阻尼”机械系统与“电容-电感-电阻”电子系统之间严格的对应相似关系,根据级联滤波的基本原理,以并联的弹簧和阻尼元件为第1级,并联的惯容器、弹簧和阻尼元件为第2级,提出了一种2级串联型“惯容-弹簧-阻尼”(ISD)车辆悬架.应用机械阻抗法建立悬架的1/4车辆模型,对悬架系统频响特性进行了仿真分析,设计了齿轮齿条惯容器装置及悬架原理样机,进行了悬架频域性能台架试验.结果表明:与传统悬架相比,2级串联型“惯容-弹簧-阻尼”车辆悬架具有良好的低频频响特性,使车身共振频率从1.3 Hz降到了0.8 Hz,车身加速度、轮胎动载荷及悬架动行程3者增益的低频共振峰值分别减小了52%,50%,15%,有效抑制了车身共振,提高了车辆的乘坐舒适性.
为了在工况变换控制过程中,实现基于电动机系统最佳效率的优化控制,构建了电动机系统效率与转速及转矩之间的关系式.由实车测得的数据,确定了研究工况的范围,在电动机加载试验台上对电动机系统效率特性进行了测试,结果显示被测驱动电动机系统效率η>80%的区域面积占整个测试区域范围的77.1%.基于最小二乘法,对电动机系统效率进行曲面拟合,综合考虑拟合结果的精度及运算工作量,确定采用4次函数构建电动机系统效率模型;利用驱动电动机外特性部分工况点测试结果对模型进行了验证.结果表明:模型计算值与实测值的最大相对误差为3.9%,建立的模型是有效的,该模型能够为在整车控制器中制定基于电动机系统最佳效率的优化控制策略提供依据.
摘要: 考虑到OH基的氧化作用,将OH基氧化模型嵌入KIVA-3V软件内,应用在柴油机排放计算中,验证了模型的正确性,分析了EGR率(5%,10%,15%,20% 和25%)对柴油机碳烟排放的影响.结果表明:计算得到的碳烟排放与测量值吻合较好;与原碳烟氧化模型相比,修正的氧化模型能较好地预测碳烟排放;EGR率增加,小负荷下的碳烟排放增加幅度较小,中高负荷下的碳烟排放增加幅度较大,特别是在大EGR率时,碳烟排放增加幅度更大;EGR率增加时,碳烟生成量和氧化量均减少,氧化量减少更多,高质量浓度碳烟分布区域更广;EGR率对OH基的抑制作用在燃烧中期较为明显,而且负荷越大,OH基体积分数随EGR率的加大变得越低.
根据流体网络与电气网络的等效关系,用电流表示血液的流动,用电阻表示血液流动的黏滞阻力,用电容表示血管的顺应性,用电感表示血流的惯性.采用1个时变电容和1个心肌电阻模拟左心室,建立了改进型五阶集总参数体循环系统电路模型.根据人体实际生理状况和临床数据制定模型参数,仿真健康心脏、不同部位病变导致的衰竭心脏的血流动力学特性,探讨了衰竭心脏的仿生控制机理,验证了所建模型的可行性.根据基础电路法列写状态方程,应用MATLAB软件进行仿真.结果表明:改进的左心室模型能全面地反映心脏的工作机理和功能,可以模拟健康状态血液动力学特性,通过改变参数又可以模拟因左心室弹性变化、外周阻力变化、心肌阻抗特性变化分别导致心衰的血流动力学特性.
切刀是草地切根机的关键作业部件,其使用寿命直接决定整机的无故障工作时间.首先依据有限元理论,利用ANSYSWorkbench对切刀进行了应力分析和模态分
析,确定了切刀薄弱截面的位置;然后,对切刀在不同工况下的载荷时间历程进行了试验,研究了其薄弱环节的应力函数;进而依据上述结论,结合切刀所用材料的S-N曲线以
及损伤理论, 对切刀进行了疲劳性能分析,得出切刀疲劳寿命的分布情况和薄弱截面的寿命值.通过对比土槽试验的失效情况与分析计算结果,验证了方法的有效性.
针对发酵过程中一些关键生化参量难以通过常规仪表实时测量,而制约发酵生产过程优化控制的问题,提出一种基于粒子群神经网络逆(PSOANN逆)的发酵软测量建模方法.以青霉素发酵过程为背景,首先建立其虚拟子系统数学模型,并构建发酵过程逆模型;其次,提出PSOANN逆的软测量实现方法,以克服解析法逆运算的复杂性甚至难于实现的问题;最终构建PSOANN逆软测量模型,并进行试验及仿真.结果表明:该软测量建模方法能够将机理建模与数据驱动建模方法相结合,充分利用对象模型的先验知识和经验数据,有效解决了青霉素发酵过程中不可在线测量的关键参量实时测量难题,其训练和测试误差分别达到0037 2和0046 1,模型具有较高的预测精度和较强的预测能力.
超高交联树脂上负载不同的胺基,制备了3种不同质量摩尔浓度的胺基修饰的吸附树脂,研究了其对水体系中苯酚和苯胺的静态吸附行为和热力学性质.结果表明:树脂对苯酚和苯胺的吸附量均随着胺基质量摩尔浓度增加而下降,但树脂对苯胺的吸附量下降更大.回归方程的相关因子都大于0.99,表明Langmuir和Freundlich方程均能较好地描述苯酚和苯胺在3种树脂上的吸附行为,对苯酚的吸附是物理吸附和氢键吸附的共同作用,而对苯胺的吸附以物理作用为主.所有Freundlich拟合方程的指数均大于1,对苯酚和苯胺的吸附均为优惠吸附.热力学数据表明:吸附均是放热过程,吸附质在树脂表面的吸附是自发过程.吸附嫡变绝对值随树脂中胺基质量摩尔浓度增加而增加,胺基使吸附质与树脂结合更为紧密.