葛立立, 俞鸣明, 方琳, 等. 含富树脂缺陷碳纤维/环氧树脂复合材料拉伸性能及失效机制[J]. 复合材料学报, 2022, 39(10): 4961-4971 doi: 10.13801/j.cnki.fhclxb.20211116.004
引用本文:
葛立立, 俞鸣明, 方琳, 等. 含富树脂缺陷碳纤维/环氧树脂复合材料拉伸性能及失效机制[J]. 复合材料学报, 2022, 39(10): 4961-4971
doi:
10.13801/j.cnki.fhclxb.20211116.004
Lili GE, Mingming YU, Lin FANG, Xueqiang LIU, Musu REN, Jinliang SUN. Tensile properties and failure mechanism of carbon fiber reinforced epoxy composite with resin rich defects[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4961-4971. doi: 10.13801/j.cnki.fhclxb.20211116.004
Citation:
Lili GE, Mingming YU, Lin FANG, Xueqiang LIU, Musu REN, Jinliang SUN. Tensile properties and failure mechanism of carbon fiber reinforced epoxy composite with resin rich defects[J].
Acta Materiae Compositae Sinica
, 2022, 39(10): 4961-4971.
doi:
10.13801/j.cnki.fhclxb.20211116.004
葛立立, 俞鸣明, 方琳, 等. 含富树脂缺陷碳纤维/环氧树脂复合材料拉伸性能及失效机制[J]. 复合材料学报, 2022, 39(10): 4961-4971 doi: 10.13801/j.cnki.fhclxb.20211116.004
引用本文:
葛立立, 俞鸣明, 方琳, 等. 含富树脂缺陷碳纤维/环氧树脂复合材料拉伸性能及失效机制[J]. 复合材料学报, 2022, 39(10): 4961-4971
doi:
10.13801/j.cnki.fhclxb.20211116.004
Lili GE, Mingming YU, Lin FANG, Xueqiang LIU, Musu REN, Jinliang SUN. Tensile properties and failure mechanism of carbon fiber reinforced epoxy composite with resin rich defects[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4961-4971. doi: 10.13801/j.cnki.fhclxb.20211116.004
Citation:
Lili GE, Mingming YU, Lin FANG, Xueqiang LIU, Musu REN, Jinliang SUN. Tensile properties and failure mechanism of carbon fiber reinforced epoxy composite with resin rich defects[J].
Acta Materiae Compositae Sinica
, 2022, 39(10): 4961-4971.
doi:
10.13801/j.cnki.fhclxb.20211116.004
对含有因局部纤维断裂形成的富树脂缺陷的碳纤维/环氧树脂复合材料拉伸性能进行研究,分析缺陷位置与试样拉伸性能的对应关系发现:当富树脂缺陷大小相同位置不同,拉伸强度从高到低分别是:缺陷位于试样1/3处,缺陷位于试样几何中心时,缺陷位于试样1/2处的边缘时。当缺陷位于同一位置时,拉伸强度随缺陷尺寸的增大而降低。通过计算机断层扫描技术(CT)检测缺陷实际尺寸位置,采用有限元仿真技术建立含缺陷的碳纤维/环氧树脂复合材料拉伸强度性能预测模型,预测结果与实验值的误差小于10%,说明了该有限元模型的可靠性,并结合模拟结果分析复合材料的失效机制。
有限元仿真 /
碳纤维/环氧树脂复合材料 /
富树脂缺陷 /
失效机制 /
Abstract:
The tensile properties of carbon fiber reinforced epoxy composite with resin rich defects caused by local fiber fracture were studied. The corresponding relationship between defect location and tensile properties was analyzed. It is found that the maximum and minimum tensile strength are observed when the defect is located at 1/3 of the sample and 1/2 of the edge of the sample, respectively whilst the intermediate strength is seen at geometric center of the sample provided the same defect size. When the defect is in the same position, the tensile strength decreases with the increase of defect size. The actual size and location of defects are detected by computed tomography (CT), and the tensile strength prediction model of carbon fiber reinforced epoxy composite with defects is established by using finite element simulation. The error between the simulation values and the experimental values is less than 10%, which shows the reliability of the finite element model. Moreover, the failure mechanism of the composites is analyzed with the simulation results.
Key words:
finite element simulation /
carbon fiber reinforced epoxy composite material /
resin-rich defect /
failure mechanism /
tensile strength
CT scanning results and design values of defect size in CF/EP composite: (a) CT detection results and design values of defect diameter; (b) CT detection results and design values of defect hole thickness; (c) CT detection results and design value of defect buried depth; (d) Error between CT detection result and design value of defect size
SEM images of tensile fracture of 2
#
sample of CF/EP composite: ((a)~(d)) Four positions with a distance of 0.5 mm, 1.5 mm, 2 mm and 2.5 mm from the defect, respectively; ((e), (f)) Transverse fiber fracture and fiber bundle pull-out fracture in
Fig.10(a)
~
10(c)
; ((g), (h)) Transverse fiber and the axial fiber in
Fig.10(d)
NumberingDefect descriptionDefect diagram
1
#
A circular defect of
R
=2 mm at the geometric center of the sample
2
#
A circular defect of
R
=4 mm at the geometric center of the sample
3
#
Semi-circular defect of
R
=4 mm at the center of one side of the sample
4
#
A circular defect of
R
=4 mm at the center of one side of the sample
5
#
A circular defect of
R
=2 mm located at 1/3 of the sample
6
#
A circular defect of
R
=4 mm located at 1/3 of the sample
7
#
No defects
Note:
R
—Radius.
PropertyValue
Meridional Young's modulus
E
1
/GPa68Latitudinal Young's modulus
E
2
/GPa66Transverse Young's modulus
E
3
/GPa42Poisson's ratio0.25In-plane shear modulus
G
12
=
G
13
/GPa5.4Out-plane shear modulus
G
23
/GPa4.5Longitudinal tensile strength/MPa686Longitudinal compressive strength/MPa401Transverse tensile strength/MPa610Transverse compressive strength/MPa400Longitudinal shear strength/MPa117Transverse shear strength/MPa117
中国国家标准化管理委员会. 定向纤维增强聚合物基复合材料拉伸性能试验方法: GB/T 3354—2014[S]. 北京: 中国标准出版社, 2014.
Standardization Administration of the People’s Republic of China. Test method for tensile properties of oriented fiber reinforced polymer matrix composites: GB/T 3354—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
地址: 北京海淀区学院路37号
电话: 010-82316907, 82315973
Email:
fhclxb@buaa.edu.cn
北京仁和汇智信息技术有限公司