The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer.
Zhongguo Fei Ai Za Zhi. 2018 Sep 20; 21(9): 697–702.
PMCID: PMC6137004

Language: Chinese | English

肺癌PD1/PD-L1免疫检查点治疗疗效预测标志物第18届世界肺癌大会相关研究综述

Predictive Markers for Treating Efficacy of PD-1/PD-L1 Inhibitors in Patients with Lung Cancer: A Review of the 18 th World Conference on Lung Cancer

陈 冠璇

250117 济南,山东大学附属山东省肿瘤医院ICU, ICU, Affliated to Shandong University, Ji'nan 250117, China

Find articles by 陈 冠璇

宋 现让

250117 济南,山东大学附属山东省肿瘤医院 基础实验室, Basic Laboratory, Shandong Tumor Hospital, Affliated to Shandong University, Ji'nan 250117, China 250117 济南,山东大学附属山东省肿瘤医院ICU, ICU, Affliated to Shandong University, Ji'nan 250117, China 250117 济南,山东大学附属山东省肿瘤医院 基础实验室, Basic Laboratory, Shandong Tumor Hospital, Affliated to Shandong University, Ji'nan 250117, China CD8 + )、type Ⅱ(PD-L1 - CD8 - )、type Ⅲ PD-L1 + CD8 - )和type Ⅳ(PD-L1 - CD8 + ),共入组58例肺癌早期患者,大部分为腺癌Ⅰ期患者。PD-L1表达阳性率为74.14%(43/58),低表达为60.34%(35/58),中度表达29.31%(17/58),高表达1.72%(1/58)。Ⅰ型72.41%(42/58),Ⅱ型6.90%(4/58),Ⅲ型1.72%(1/58),Ⅳ型18.97%(11/58)。PD-L1 + CD8 + 最多,PD-L1 + CD8 - 占比最少。该研究发现,CD8 + T细胞浸润情况跟年龄、性别、分期及病理类型均没有相关性。所以,该项研究者认为,应用免疫抑制剂治疗前,检测组织PD-L1及CD8 + 细胞的状态可以提高有效率。但是,壁报中并未展示不同分型患者治疗获益的相关数据,该研究的进一步数据,非常值得期待。

相似的研究来自Wang等 [ 11 ] ,检测了168例肺神经内分泌肿瘤组织PD-L1及CD8 + TILs的状态。肿瘤细胞PD-L1表达水平≥5%或TILs PD-L1表达水平 > 1%界定为PD-L1阳性。72例患者的肿瘤细胞或TILs表面均有PD-L1表达,占总数的42.9%。CD8 + TILs与PD-L1表达有显著相关性。PD-L1与OS及PFS没有相关性。肿瘤间质CD8 + TIL越多OS及PFS越长,并且是良好预后的独立相关因素。

黑色素瘤免疫检查点抑制剂治疗开始较肺癌更早,预测其疗效标志物的研究更加深入。一项研究 [ 12 ] 认为,CD8 + 细胞的总数并不是黑色素瘤预后的关键,起决定作用的是CD69 + CD103 + 肿瘤驻留CD8 + T细胞数量,在这些肿瘤驻留CD8 + T表面PD1的表达更多,同时这类细胞在使用免疫抑制剂治疗早期会显著增殖。研究者认为,肿瘤驻留CD8 + T有可能会成为预测免疫抑制剂疗效的标志物。

2. 肿瘤突变负荷及基因突变修复能力

肿瘤突变负荷(tumor mutational burden, TMB)是指每百万碱基中被检测出的体细胞基因编码错误、碱基替换、基因插入或缺失错误的总数。理论上TMB越高,新的肿瘤相关抗原的产生就越多,就越有可能刺激产生免疫应答,配合抑制性免疫信号的解除,治疗效果会越好 [ 13 ] 。错配修复基因(mis-match repair, MMR)编码的蛋白与基因的错配修复有关。MMR功能缺陷造成微卫星不稳定(microsatelliteinstability, MSI)和体细胞基因变异得不到修复,TMB也就会高。MSI本身就是一种带有微卫星变化的基因超突变状态。通常而言,绝大部分MSI-H的样本,TMB也较高,但反之则不一定成立。鉴于MMR、MSI和TMB三者之间的相互关系,三者均有作为免疫检查点抑制剂治疗标志物的理论可行性。

TMB检测的方法是基因组分析,方法包括全基因组测序、全外显子测序和选择性基因测序,有研究认为不同大小的测序组合会影响TMB准确度。TMB的cut-off值以及不同瘤种间是否存在差异还没有统一的标准,目前普遍认同 < 6 mutations/Mb定义为TMB低,≥20 mutations/Mb定义为TMB高。

基因分析发现,在肺癌中携带下述基因变异的患者,TMB更有可能高: RRM1 TP53 FANCE NEIL1 POLE POLG FANCE GEN1 RPA1 。而NSCLC中有确定药物治疗靶点突变的患者,如 EML4-ALK 融合、 EGFR 突变、 ROS1 重排、 BRAF 融合等,通常TMB表达较低。

一项研究纳入了147例肺癌患者,检测450个基因包括全部外显子及部分内含子。结果发现 KRAS 突变组的TMB值(中位TMB=10.6)明显高于野生型组患者(中位TMB=4.6, P =0.027)。 EGFR 突变组的TMB值明显低于 EGFR 野生型组(中位TMB=8.4, P =0.034)。TK融合组的TMB中位值为6.5,与其他组没有显著差异。15% EGFR 野生型组患者的TMB值> 20,而只有6% EGFR 突变组患者属于高TMB [ 14 ]

鉴于全外显子测序(whole exome sequencing, WES)价格昂贵,Chen等 [ 15 ] 比较了目标基因组分析(targeted genomic profiling, TGP)和WES对27例NSCLC患者TMB的分析,发现TGP(811个基因)和WES结果具有高度一致性(R 2 =0.71, P < 0.05)。同时发现 MMR 基因突变仅发生在高TMB的患者(错配修复基因为 MSH2 PMS2 )。对使用了Pembrolizumab治疗的34例患者进行评估,发现使用TGP及WES进行疗效预测的AUC分别为0.80、0.84。这些结果说明,TGP可以替代WES作为TMB检测技术。对8例患者的肿瘤组织及ctDNA同时检测TMB,发现结果也高度一致( R 2 =0.80, P < 0.05),说明可以考虑选择无创的液体活检替代有创的组织活检。

Iijima等 [ 16 ] 的研究也得到了相同的结论,14例接受nivolumab治疗的患者,在治疗前及治疗后的1周、2周、4周、6周、8周抽取外周血进行53个目标基因进行二代测序并与组织进行比较,结果发现高TMB患者用药2周内就可根据突变等位基因频率(mutation allelic frequency, MAF)下降情况判断疗效。

3. 肿瘤驱动基因突变

除研究总的基因突变状况与免疫治疗有效性的关系外,人们也期望能发现某个驱动基因的突变能够预测免疫治疗的有效性。有研究 [ 17 , 18 ] 表明 EGFR 突变或ALK重排的NSCLC患者使用PD-1/L1无效,机制尚不清楚。Liu等 [ 19 ] 的研究纳入745例患者,分为EGFR/ALK阳性组(344例)和EGFR并ALK阴性组(401例)。阳性组5.52% PD-L1 + /CD8 + ;11.92% PD-L1 - /CD8 + ;18.90% PD-L1 + /CD8 - ;63.66% PD-L1 - /CD8 - 。EGFR并ALK阴性组13.97% PD-L1 + /CD8 + ;6.98% PD-L1 - /CD8 + ;30.42% PD-L1 + /CD8 - ;48.63% PD-L1 - /CD8 - 。结果发现EGFR/ALK阳性患者PD-L1 + /CD8 + 对较低而PD-L1 - /CD8 - 则明显较高。EGFR/ALK阳性组患者的亚组5年生存率存在明显差异(PD-L1 + /CD8 + : 41.9%, PD-L1 - /CD8 + : 91.0%, PD-L1 + /CD8 - : 75.4%, PD-L1 - /CD8 - : 69.7%, P =0.003)。然而在EGFR并ALK阴性组差异则不显著(PD-L1 + /CD8 + : 66.5%, PD-L1 - /CD8 + : 76.9%, PD-L1 + /CD8 - : 62.3%, PD-L1 - /CD8 - : 70.6%, P =0.341)。但是使用Nivolumab治疗患者,虽然 EGFR 突变阳性患者疗效不佳,但是仍有部分患者明显获益,具体机制尚需进一步研究 [ 20 ]

4. 免疫效应标志物

PD-1/PD-L1免疫治疗,是解除免疫抑制从而提高效应细胞杀伤的敏感性,激发和增强机体抗肿瘤免疫应答,以达到控制肿瘤的目的。所以,假设治疗有效,那么T细胞活化的下游一系列炎症因子理论上都应该升高,例如IFN-γ、TNF-α、IL-6等,所以,炎症因子可能是预测免疫治疗的标志物。

一项研究入组了17例NSCLC和21例黑色素瘤、接受nivolumab治疗的患者,发现INFγ与PFS、OS、疾病控制率(disease control rate, DCR)相关,INFγ中、高水平组PFS显著高于低表达组(5.1个月 vs 2.0个月, P =0.012, 4),两组的OS虽然没有统计学差异,但中、高水平组要长于低水平组(10.2个月 vs 4.9个月, P =0.068, 7) [ 21 ] 。另有研究 [ 22 ] 表明,使用nivolumab或pembrolizumab的NSCLC患者,治疗1周内血清IL-6、CRP升高组有效率显著高于未升高组,而TNF-α升高组患者,未表现出显著的有效率。

Kowanetz认为效应T细胞(T-effector, Teff)的基因表达(gene expression, GE)情况可以反映免疫抑制剂治疗前的免疫状态。作者分析了753例使用atezolizumab的NSCLC患者的Ⅲ期临床试验(OAK)的结果。将 PD-L1 CXCL9 IFNγ 这3个基因作为Teff的标志,检测Teff GE,同时检测肿瘤组织PD-L1的表达情况。结果发现,Teff GE越高,PFS获益越显著。用Teff GE的中位值将患者分组,高表达组的PFS显著高于低表达组(HR=0.73, 95%CI: 0.58-0.91)。作者同时认为,使用Teff GE来预测atezolizumab的疗效较PD-L1更为敏感,因为目前数据显示使用Teff GE来预测,50%的患者可以有PFS的获益 [ 23 ]

5. 血细胞计数

除以上指标外,血细胞计数等常规实验室指标在预测免疫治疗疗效方面也有较好效果。本次大会有多项研究对此进行了报道。

一项研究回顾性分析了134例晚期或者复发使用Nivolumab的NSCLC患者,分析患者实验室化验的常规指标,包括:中性粒细胞绝对计数(absolute neutrophil count, ANC)、淋巴细胞绝对计数(absolute lymphocytes count, ALC)、单核细胞绝对计数(absolute monocytes count, AMC)、嗜酸性粒细胞绝对计数(absolute eosinophil count, AEC)、CRP以及乳酸脱氢酶水平。多因素分析结果表明,低水平ANC、高水平ALC、高水平AEC是较好的PFS、OS的独立相关因素。将以上3个指标做不同分组分析,全部符合3个条件的患者预后最好,仅符合一个条件的,预后最差,中位PFS分别是209 d、87 d、42 d,药物有效率分别为43.5%、27.1%、5.9% [ 8 ] 。另外一项研究,应用免疫抑制剂治疗2个周期后,ANC < 4, 000患者的OS明显延长(NR vs 4.9个月, P =0.02)。ALC升高患者的DCR有所增加(147 vs 155, P =0.05)。该研究还同时发现,肺腺癌患者肿瘤组织中TTF1表达水平与免疫治疗有效率相关(88% vs 45%, P =0.03),ALC≥1, 000患者的TTF1阳性率更高(82% vs 45%, P =0.05) [ 24 ] 。一项应用nivolumab的研究发现,19例患者治疗前低水平ANC、中性粒细胞、淋巴细胞比值(neutrophil to lymphocyte ratio, NLR)和血小板、淋巴细胞比值(platelet lymphocyte ratio, PLR)生存期更长,治疗过程中NLR升高反映疾病进展 [ 25 ]

Soyano等 [ 26 ] 的研究纳入了157例应用nivolumab或pembrolizumab的NSCLC患者,结果表明治疗前高水平的ANC、AMC、NLR、MLR患者的预后更差。治疗前ANC/ALC≥5.9患者的死亡风险及疾病进展风险均显著高于ANC/ALC < 5.9患者(HR=1.65, 95%CI: 1.06-2.56, P =0.027)(HR=1.65, 95%CI: 1.17-2.34, P =0.005)。治疗前MLR≥11.3组患者死亡风险更高(HR=2.13, 95%CI: 1.32-3.44, P =0.002)。

6. 综合分析模型

以上单一标志物的应用并不十分理想,目前有研究将涉及PD-1疗效的影响因素综合起来设计成数学模型来提高预测免疫治疗效果的准确性。

一项研究 [ 27 ] 将使用PD-1抗体的NSCLC患者提取361份关注区域(region of interest, ROIs)样本和254, 205个细胞核,总结出一个新型的数字病理系统,用以预测使用PD-1抗体的疗效。系统通过计数肿瘤的ROIs的细胞核的形态特征,包括大小、圆度、周长等与平均值或标准制定差异以及核内部特征(主要是染色质结构)就可以预测疗效。作者认为,细胞核的形态学特征要比多形性及异质性测量数据(pleomorphism and heterogeneity measurement data, CFLCM)还要重要。虽然本次分析的样本量不足够,结果稳定性可能受到影响,但是作者认为针对病理组织使用计算机系统进行预测疗效是可行的。

Wungki等 [ 13 , 28 ] 则将性别(Sex)、ECOG评分、中性粒细胞与淋巴细胞比值(NLR)、治疗后NLR减治疗前NLR(Delta NLR=DNLR)等参数设计成iSEND计算模型,将使用nivolumab的患者进行验证,发现评分好的患者预后好,PFS分别为17.4个月 vs 5.1个月(HR=0.32, 95%CI: 0.20-0.50, P < 0.000, 1)。

7. 展望

免疫检查点抑制剂治疗肿瘤其效果除与肿瘤细胞免疫抑制信号的解除有关外,还与肿瘤免疫刺激信号强弱、免疫效应细胞功能的发挥及其他免疫抑制信号途径的活动有关,机制相对复杂,找到单一标志物有效筛选敏感患者的可能性较低。因此,该领域的研究重点一是寻找更适合的标志物,例如一项入组504例鳞癌及522例腺癌患者的研究发现,不论何种病理类型,EAM相关的基因过度表达均可以导致CD4/CD8 T细胞下降和B/Treg细胞增加,影响免疫治疗疗效 [ 29 ] ;二是利用大数据进行更深的挖掘,从而建立综合预测模型,多维度预测治疗敏感性。另外,对标志物检测技术和判别标准的统一化也很有必要。

References

1. Wu HN, Zhang Q. Clinical value of expression of PD-L1 and CD8 of 58 cases with NSCLC. Poster in the 18 th World Conference on Lung Cancer.
2. Sun WY, Ma KW, Wang X, et al . Altered expression of programmed death-1 receptor (PD-1) and its ligand PD-L1, PD-L2 after neo-adjuvant chemotherapy in lung cancer. Poster in the 18 th World Conference on Lung Cancer.
3. Kang XY, Song X. Correlation study between plasma sPD-L1 and the efficacy and prognosis of patients with non-small cell lung cancer. Poster in the 18 th World Conference on Lung Cancer.
4. Shi XS, Chen YQ, Feng FL, et al . A systematic and genome-wide correlation analysis of PD-L1 expression and common NSCLC driver genes. Poster in the 18 th World Conference on Lung Cancer.
5. Akamine T, Takada K, Toyokawa G, et al. Association of preoperative serum CRP with PD-L1 expression in 508 patients with non-small cell lung cancer: A comprehensive analysis of systemic inflammatory markers. Surg Oncol. 2018; 27 (1):88–94. doi: 10.1016/j.suronc.2018.01.002. [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Routine PD-L1 Immunohistochemistry testing by 22C3 in a Canadian Reference Testing Centre. Poster in the 18 th World Conference on Lung Cancer.
7. Julia S, Simone R, Carmen BM, et al . Immune cell infiltrates in non-small cell lung cancer and interleukin-22 expression. Poster in the 18 th World Conference on Lung Cancer.
8. Tanizaki J, Haratani K, Hayashi H, et al. Peripheral blood biomarkers associated with clinical outcome in non-small cell lung cancer patients treated with nivolumab. J Thorac Oncol. 2018; 13 (1):97–105. doi: 10.1016/j.jtho.2017.10.030. [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Takada K, Okamoto T, Toyokawa G, et al. The expression of PD-L1 protein as a prognostic factor in lung squamous cell carcinoma. Lung Cancer. 2017; 104 :7–15. doi: 10.1016/j.lungcan.2016.12.006. [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Andrés BJ, Carlos Z, Silvia VA, et al . Determination of soluble PD-L1 as a potential biomaker for anti-PD(L)1 therapy in non-small cell lung cancer (NSCLC). Poster in the 18 th World Conference on Lung Cancer.
11. Wang HY, Li ZW, Sun W, et al . PD-L1 expression and CD8 + T cell infiltration associate with the prognosis of pulmonary neuroendocrine tumor. Poster in the 18 th World Conference on Lung Cancer.
12. Edwards J, Wilmott JS, Madore J, et al. CD103 + tumor-resident CD8 + T cells are associated with improved survival in immunotherapy naive melanoma patients and expand significantly during anti-PD1 treatment. Clin Cancer Res. 2018 doi: 10.1158/1078-0432.CCR-17-2257. [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Wungki P, Gilberto L, Deukoo K, et al . Correlating ISEND and tumor mutation burden (TMB) with clinical outcomes of advanced non-small cell lung cancer (ANSCLC) patients on nivolumab. Poster in the 18 th World Conference on Lung Cancer.
14. Chen MW, Hu J, Wang L, et al . The potential clinical application of comprehensive genomic profiling in targeted therapy and immunotherapy of lung cancer. Poster in the 18 th World Conference on Lung Cancer.
15. Chen LK. Predicting tumor mutational burden (TMB) and tumor neoantigen burden (TNB) of East Asian ANSCLC patients by a targeted genomic profiling. Poster in the 18 th World Conference on Lung Cancer.
16. Iijima Y, Hirotsu Y, Amemiya K, et al. Very early response of circulating tumour-derived DNA in plasma predicts efficacy of nivolumab treatment in patients with non-small cell lung cancer. Eur J Cancer. 2017; 86 :349–357. doi: 10.1016/j.ejca.2017.09.004. [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. Satoshi W, Hiroshi T, Koichiro N, et al . Retrospective analysis of antitumor effects and biomarkers of nivolumab in NSCLC patients with EGFR mutations. Poster in the 18 th World Conference on Lung Cancer.
18. Yasuhiro K, Kageaki W, Jumpei K, et al . Relationship between clinical factors and the expression of programmed death ligand 1 in lung cancer. Poster in the 18 th World Conference on Lung Cancer.
19. Liu SY, Dong ZY, Wu SP, et al . PD-L1 and CD8 expression in EGFR -mutant or ALK -rearranged patients with lung cancer. Poster in the 18 th World Conference on Lung Cancer.
20. Hironori Y, Young HK, Hiroaki O, et al . Nivolumab for patients with EGFR mutation-positive non-small cell lung cancer. Poster in the 18 th World Conference on Lung Cancer.
21. Niki K, Maria GC, Ana GC, et al . Interferon-gamma (INFG) as a biomarker to guide immune checkpoint blockade (ICB) in cancer therapy. Poster in the 18 th World Conference on Lung Cancer.
22. Yuichi O, Yusuke A, Takafumi K, et al . Inflammatory cytokine induction after anti-pd-1 ab administration relates to the efficacy and safety in patients with non-small cell lung cancer. Poster in the 18 th World Conference on Lung Cancer.
23. Marcin K, Zou W, Mark M, et al . Pre-Existing immunity measured by teff gene expression in tumor tissue is associated with atezolizumad efficacy in NSCLC. Poster in the 18 th World Conference on Lung Cancer.
24. Sarita A, Young KC, Andrew AD, et al . Pretreatment neutrophil & platelet count as a predictor for unfavorable clinical outcome in non-small cell lung cancer (NSCLC). Poster in the 18 th World Conference on Lung Cancer.
25. Keiko T, Tadaaki Y, Nobuyo T, et al . The impact of neutrophil/lymphocyte ratio as the predictive marker to anti-PD-1 antibody treatment in NSCLC patients. Poster in the 18 th World Conference on Lung Cancer.
26. Aixa ES, Bhagirathbhai D, Julian M, et al . Blood biomarkers correlate with outcome in advanced non-small cell lung cancer patients treated with anti PD-1 antibodies. Poster in the 18 th World Conference on Lung Cancer.
27. Akira S, Nao A, Yojiro M, et al . Prediction sensitivity of PD-1 checkpoint blockade using pathological tissues specimens by novel computerized analysis system. Poster in the 18 th World Conference on Lung Cancer.
28. Wungki P, Deukoo K, Amrita D, et al . ISEND may predict clinical outcomes for advanced NSCLC patients on PD-1/PD-L1 inhibitors but not chemotherapies or targeted kinase inhibitors. Poster in the 18 th World Conference on Lung Cancer.
29. Young KC, Wooyoung MC, William HB, et al . Endothelial adhesion molecule overexpression correlates to decreased CD8 T cells and increased B/Treg cells in lung cancer. Poster in the 18 th World Conference on Lung Cancer.

Articles from Chinese Journal of Lung Cancer are provided here courtesy of Editorial office of Chinese Journal of Lung Cancer