SCENIC转录因子分析实战---以Seurat的pbmc3K数据集为例
下面的 代码复制粘贴即可运行 ,超级简单,如果是你自己的数据,你只需 同样的模式 做出来 exprMat 表达矩阵,和cellInfo的临床表型,就可以走这个SCENIC流程的4个步骤啦。
rm(list = ls())
library(Seurat)
# devtools::install_github('satijalab/seurat-data')
library(SeuratData)
AvailableData()
# InstallData("pbmc3k") # (89.4 MB)
data("pbmc3k")
exprMat <- as.matrix(pbmc3k@assays$RNA@data)
dim(exprMat)
exprMat[1:4,1:4]
cellInfo <- pbmc3k@meta.data[,c(4,2,3)]
colnames(cellInfo)=c('CellType', 'nGene' ,'nUMI')
head(cellInfo)
table(cellInfo$CellType)
### Initialize settings
library(SCENIC)
# 保证cisTarget_databases 文件夹下面有下载好2个1G的文件
scenicOptions <- initializeScenic(org="hgnc",
dbDir="cisTarget_databases", nCores=1)
saveRDS(scenicOptions, file="int/scenicOptions.Rds")
### Co-expression network
genesKept <- geneFiltering(exprMat, scenicOptions)
exprMat_filtered <- exprMat[genesKept, ]
exprMat_filtered[1:4,1:4]
dim(exprMat_filtered)
runCorrelation(exprMat_filtered, scenicOptions)
exprMat_filtered_log <- log2(exprMat_filtered+1)
runGenie3(exprMat_filtered_log, scenicOptions)
### Build and score the GRN
exprMat_log <- log2(exprMat+1)
scenicOptions@settings$dbs <- scenicOptions@settings$dbs["10kb"] # Toy run settings
scenicOptions <- runSCENIC_1_coexNetwork2modules(scenicOptions)
scenicOptions <- runSCENIC_2_createRegulons(scenicOptions,
coexMethod=c("top5perTarget")) # Toy run settings
library(doParallel)
scenicOptions <- runSCENIC_3_scoreCells(scenicOptions, exprMat_log )
scenicOptions <- runSCENIC_4_aucell_binarize(scenicOptions)
tsneAUC(scenicOptions, aucType="AUC") # choose settings`
因为我们这个是实战案例,表达矩阵很大,接近3000个细胞,是全部的人类基因,所以耗费了一个晚上才完成这个流程,运行的log日志如下:
`> runGenie3(exprMat_filtered_log, scenicOptions)
Using 480 TFs as potential regulators...
Running GENIE3 part 1
Running GENIE3 part 10
Running GENIE3 part 2
Running GENIE3 part 3
Running GENIE3 part 4
Running GENIE3 part 5
Running GENIE3 part 6
Running GENIE3 part 7
Running GENIE3 part 8
Running GENIE3 part 9
Finished running GENIE3.
> ### Build and score the GRN
> exprMat_log <- log2(exprMat+1)
> scenicOptions@settings$dbs <- scenicOptions@settings$dbs["10kb"] # Toy run settings
> scenicOptions <- runSCENIC_1_coexNetwork2modules(scenicOptions)
07:33 Creating TF modules
Number of links between TFs and targets (weight>=0.001): 1773984
nTFs 480
nTargets 5318
nGeneSets 3835
nLinks 2516422
> scenicOptions <- runSCENIC_2_createRegulons(scenicOptions,
+ coexMethod=c("top5perTarget")) # Toy run settings
07:34 Step 2. Identifying regulons
tfModulesSummary:
top5perTarget 59
07:34 RcisTarget: Calculating AUC
Scoring database: [Source file: hg19-tss-centered-10kb-7species.mc9nr.feather]
07:35 RcisTarget: Adding motif annotation
Using BiocParallel...
Number of motifs in the initial enrichment: 18696
Number of motifs annotated to the matching TF: 334
07:35 RcisTarget: Prunning targets
07:37 Number of motifs that support the regulons: 334
Preview of motif enrichment saved as: output/Step2_MotifEnrichment_preview.html
> library(doParallel)
Loading required package: iterators
> scenicOptions <- runSCENIC_3_scoreCells(scenicOptions, exprMat_log )
07:37 Step 3. Analyzing the network activity in each individual cell
Number of regulons to evaluate on cells: 20
Biggest (non-extended) regulons:
SPI1 (538g)
CEBPB (47g)
CEBPD (41g)
SPIB (39g)
TBX21 (27g)
IRF8 (17g)
STAT1 (14g)
IRF7 (12g)
Quantiles for the number of genes detected by cell:
(Non-detected genes are shuffled at the end of the ranking. Keep it in mind when choosing the threshold for calculating the AUC).
min 1% 5% 10% 50% 100%
212.00 325.00 434.95 539.90 816.00 3400.00
07:38 Finished running AUCell.
07:38 Plotting heatmap...
07:38 Plotting t-SNEs...
> scenicOptions <- runSCENIC_4_aucell_binarize(scenicOptions)
Binary regulon activity: 11 TF regulons x 1678 cells.
(19 regulons including 'extended' versions)
11 regulons are active in more than 1% (16.78) cells.
> tsneAUC(scenicOptions, aucType="AUC") # choose settings
[1] "int/tSNE_AUC_50pcs_30perpl.Rds"` </pre>
可以看到,对于我们这个真实数据,就是PBMC3K的,也只有19个regulon被挑选出来了,涉及到11个TF基因
作者推荐的运算结果保存是:
export2loom(scenicOptions, exprMat)
saveRDS(scenicOptions, file="int/scenicOptions.Rds")` </pre>
实际上我们也用不上哈!
输出结果的解读
首先看看转录因子富集结果:
rm(list = ls())
library(Seurat)
library(SCENIC)
library(doParallel)
scenicOptions=readRDS(file="int/scenicOptions.Rds")
### Exploring output
# Check files in folder 'output'
# Browse the output .loom file @ http://scope.aertslab.org
# output/Step2_MotifEnrichment_preview.html in detail/subset:
motifEnrichment_selfMotifs_wGenes <- loadInt(scenicOptions, "motifEnrichment_selfMotifs_wGenes")
as.data.frame(sort(table(motifEnrichment_selfMotifs_wGenes$highlightedTFs),decreasing = T))` </pre>
每个基因的motif数量:
> as.data.frame(sort(table(motifEnrichment_selfMotifs_wGenes$highlightedTFs),decreasing = T))
Var1 Freq
1 SPI1 61
2 IRF7 59
3 TBX21 47
4 STAT1 33
5 SPIB 27
6 MAFB 26
7 IRF8 23
8 CEBPD 21
9 FOS 10
10 POU2AF1 5
11 CEBPB 3
12 TCF7 3
13 MAX 2
14 FOSB 1
15 LEF1 1
16 LYL1 1` </pre>
可视化IRF7基因的motif序列特征:
tableSubset <- motifEnrichment_selfMotifs_wGenes[highlightedTFs=="IRF7"]
viewMotifs(tableSubset)` </pre>
这个时候的IRF7基因有 56 个motif,如下所示:
如果加上活性单元(regulon)的限定后:
regulonTargetsInfo <- loadInt(scenicOptions, "regulonTargetsInfo")
tableSubset <- regulonTargetsInfo[TF=="IRF7" & highConfAnnot==TRUE]
viewMotifs(tableSubset)` </pre>
就只有12个啦,不过我们需要的并不是这些结果啦。
如果要理解(regulon),需要看我分享的:使用AUCell包的AUCell_calcAUC函数计算每个细胞的每个基因集的活性程度
可以使用的结果:
其中output文件夹本来就已经自动绘制了大量的图表供使用,而图表对应的数据就存储在 loomFile 里面,可以使用下面的代码重新获取:
rm(list = ls())
library(Seurat)
library(SCENIC)
library(doParallel)
library(SCopeLoomR)
scenicOptions=readRDS(file="int/scenicOptions.Rds")
scenicLoomPath <- getOutName(scenicOptions, "loomFile")
loom <- open_loom(scenicLoomPath)
# Read information from loom file:
regulons_incidMat <- get_regulons(loom)
regulons <- regulonsToGeneLists(regulons_incidMat)
regulonsAUC <- get_regulons_AUC(loom)
regulonsAucThresholds <- get_regulon_thresholds(loom)
embeddings <- get_embeddings(loom)` </pre>
可以可视化其中一些TF的AUC值,也可以根据这些TF的AUC值对细胞亚群进行重新降维聚类分群。可以很容易看到血液里面的不同细胞亚群的特异性的转录调控因子: