我远程连接到一个数据湖,使用Hive beeline终端处理存储在Hadoop集群中的数据,并将数据以
orc
的格式存储在HDFS上。
然后我把这个orc文件转移到我的本地系统上,因为本地系统没有任何Hadoop HDFS设置。
我在本地机器上安装了spark,并使用pyspark读取orc文件的一个数据部分。
我的orc文件在我的本地机器上有以下文件结构。
orc_table--
Partition-01--
1.000000_0
Partition-02--
1.000000_0
2.000000_0
Partition-03--
1.000000_0
我可以通过提供完整的文件路径和扩展名(00000000_0)来读取单个部分(比如,1.000000_0),在一个spark数据框架中使用以下代码
import findspark
findspark.init()
from pyspark.sql import SparkSession
from pyspark import SparkContext
sc = SparkContext("local", "first_app")
spark = SparkSession(sc)
df_spark = spark.read.format("orc").option("inferSchema", "true").orc("C:/orc_table/Partition-01/1.000000_0")
但是,我想在一个spark数据框中一次性读取存储在orc_table
不同文件夹中的所有分区文件。我给出了直到orc_table
文件夹的路径(比如 "C:/orc_table")。我得到了以下错误。
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
Input In [8], in <cell line: 1>()
----> 1 df_spark = spark.read.format("orc").option("inferSchema", "true").orc("C:\orc_table\Partition-01")
File C:\Spark\spark-3.1.2-bin-hadoop3.2\python\pyspark\sql\readwriter.py:803, in DataFrameReader.orc(self, path, mergeSchema, pathGlobFilter, recursiveFileLookup, modifiedBefore, modifiedAfter)
801 if isinstance(path, str):
802 path = [path]
--> 803 return self._df(self._jreader.orc(_to_seq(self._spark._sc, path)))
File C:\Spark\spark-3.1.2-bin-hadoop3.2\python\lib\py4j-0.10.9-src.zip\py4j\java_gateway.py:1304, in JavaMember.__call__(self, *args)
1298 command = proto.CALL_COMMAND_NAME +\
1299 self.command_header +\
1300 args_command +\
1301 proto.END_COMMAND_PART
1303 answer = self.gateway_client.send_command(command)
-> 1304 return_value = get_return_value(
1305 answer, self.gateway_client, self.target_id, self.name)
1307 for temp_arg in temp_args:
1308 temp_arg._detach()
File C:\Spark\spark-3.1.2-bin-hadoop3.2\python\pyspark\sql\utils.py:111, in capture_sql_exception.<locals>.deco(*a, **kw)
109 def deco(*a, **kw):
110 try:
--> 111 return f(*a, **kw)
112 except py4j.protocol.Py4JJavaError as e:
113 converted = convert_exception(e.java_exception)
File C:\Spark\spark-3.1.2-bin-hadoop3.2\python\lib\py4j-0.10.9-src.zip\py4j\protocol.py:326, in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
331 "An error occurred while calling {0}{1}{2}. Trace:\n{3}\n".
332 format(target_id, ".", name, value))
Py4JJavaError: An error occurred while calling o30.orc.
: java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method)
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:645)
at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:1230)
at org.apache.hadoop.fs.FileUtil.list(FileUtil.java:1435)
at org.apache.hadoop.fs.RawLocalFileSystem.listStatus(RawLocalFileSystem.java:493)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1868)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1910)
at org.apache.hadoop.fs.ChecksumFileSystem.listStatus(ChecksumFileSystem.java:678)
at org.apache.spark.util.HadoopFSUtils$.listLeafFiles(HadoopFSUtils.scala:225)
at org.apache.spark.util.HadoopFSUtils$.$anonfun$parallelListLeafFilesInternal$1(HadoopFSUtils.scala:95)
at scala.collection.TraversableLike.$anonfun$map$1(TraversableLike.scala:238)
at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
at scala.collection.TraversableLike.map(TraversableLike.scala:238)
at scala.collection.TraversableLike.map$(TraversableLike.scala:231)
at scala.collection.AbstractTraversable.map(Traversable.scala:108)
at org.apache.spark.util.HadoopFSUtils$.parallelListLeafFilesInternal(HadoopFSUtils.scala:85)
at org.apache.spark.util.HadoopFSUtils$.parallelListLeafFiles(HadoopFSUtils.scala:69)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex$.bulkListLeafFiles(InMemoryFileIndex.scala:158)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex.listLeafFiles(InMemoryFileIndex.scala:131)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex.refresh0(InMemoryFileIndex.scala:94)
at org.apache.spark.sql.execution.datasources.InMemoryFileIndex.<init>(InMemoryFileIndex.scala:66)
at org.apache.spark.sql.execution.datasources.DataSource.createInMemoryFileIndex(DataSource.scala:581)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:417)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:325)
at org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:307)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:307)
at org.apache.spark.sql.DataFrameReader.orc(DataFrameReader.scala:872)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Spark版本:3.1.2。
Scala版本:2.12.10。