The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The
https://
ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,
the contents by NLM or the National Institutes of Health.
Learn more:
PMC Disclaimer
V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation
.
Immunology
160
, 233–247 (2020).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
2.
Klein L., Kyewski B., Allen P. M. & Hogquist K. A.
Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see)
.
Nat. Rev. Immunol.
14
, 377–391 (2014).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
4.
Yun T. J. & Bevan M. J.
The Goldilocks conditions applied to T cell development
.
Nature immunology
vol.
2
13–14 (2001). [
PubMed
]
[
Google Scholar
]
5.
Nakayama T. & Yamashita M.
The TCR-mediated signaling pathways that control the direction of helper T cell differentiation
.
Semin. Immunol.
22
, 303–309 (2010). [
PubMed
]
[
Google Scholar
]
6.
Hogquist K. A. & Jameson S. C.
The self-obsession of T cells: how TCR signaling thresholds affect fate “decisions” and effector function
.
Nat. Immunol.
15
, 815–823 (2014).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
7.
Kaech S. M. & Cui W.
Transcriptional control of effector and memory CD8+ T cell differentiation
.
Nat. Rev. Immunol.
12
, 749–761 (2012).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
9.
Treiner E. et al.
Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1
.
Nature
422
, 164–169 (2003). [
PubMed
]
[
Google Scholar
]
10.
Lagattuta K. A.
et al.
Repertoire analyses reveal T cell antigen receptor sequence features that influence T cell fate
.
Nat. Immunol.
23
, 446–457 (2022).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
11.
DerSimonian H., Band H. & Brenner M. B.
Increased frequency of T cell receptor V alpha 12.1 expression on CD8+ T cells: evidence that V alpha participates in shaping the peripheral T cell repertoire
.
J. Exp. Med.
174
, 1287 (1991).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
12.
Stadinski B. D.
et al.
Hydrophobic CDR3 residues promote the development of self-reactive T cells
.
Nat. Immunol.
17
, 946–955 (2016).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
13.
Li H. M.
et al.
TCRβ repertoire of CD4+ and CD8+ T cells is distinct in richness, distribution, and CDR3 amino acid composition
.
J. Leukoc. Biol.
99
, 505–513 (2016).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
14.
Carter J. A.
et al.
Single T Cell Sequencing Demonstrates the Functional Role of αβ TCR Pairing in Cell Lineage and Antigen Specificity
.
Front. Immunol.
10
, 1516 (2019).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
15.
Daley S. R.
et al.
Cysteine and hydrophobic residues in CDR3 serve as distinct T-cell self-reactivity indices
.
J. Allergy Clin. Immunol.
144
, 333–336 (2019).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
16.
Kasatskaya S. A.
et al.
Functionally specialized human CD4+ T-cell subsets express physicochemically distinct TCRs
.
Elife
9
, (2020).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
17.
Zhang Z., Xiong D., Wang X., Liu H. & Wang T.
Mapping the functional landscape of T cell receptor repertoires by single-T cell transcriptomics
.
Nat. Methods
18
, 92–99 (2021).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
18.
Schattgen S. A.
et al.
Integrating T cell receptor sequences and transcriptional profiles by clonotype neighbor graph analysis (CoNGA)
.
Nat. Biotechnol.
40
, 54–63 (2022).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
19.
COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium. Electronic address: julian.knight@well.ox.ac.uk & COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium.
A blood atlas of COVID-19 defines hallmarks of disease severity and specificity
.
Cell
185
, 916–938.e58 (2022).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
22.
Domínguez Conde C. et al.
Cross-tissue immune cell analysis reveals tissue-specific features in humans
.
Science
376
, eabl5197 (2022).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
23.
Boutet S. C.
et al.
Scalable and comprehensive characterization of antigen-specific CD8 T cells using multi-omics single cell analysis
.
The Journal of Immunology
202
, 131–134 (2019).
[
Google Scholar
]
25.
Nathan A. et al.
Single-cell eQTL models reveal dynamic T cell state dependence of disease loci
.
Nature
606
, 120–128 (2022).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
26.
Venturi V., Price D. A., Douek D. C. & Davenport M. P.
The molecular basis for public T-cell responses?
Nat. Rev. Immunol.
8
, 231–238 (2008). [
PubMed
]
[
Google Scholar
]
27.
Lu T. et al.
Deep learning-based prediction of the T cell receptor-antigen binding specificity
.
Nat Mach Intell
3
, 864–875 (2021).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
28.
Atchley W. R., Zhao J., Fernandes A. D. & Drüke T.
Solving the protein sequence metric problem
.
Proc. Natl. Acad. Sci. U. S. A.
102
, 6395–6400 (2005).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
29.
Tilloy F. et al.
An Invariant T Cell Receptor a Chain Defines a Novel TAP-independent Major Histocompatibility Complex Class Ib–restricted α/β T Cell Subpopulation in Mammals
.
J. Exp. Med.
189
, 1907–1921 (1999).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
30.
Porcelli S., Morita C. T. & Brenner M. B.
CDlb restricts the response of human CD4–8–T lymphocytes to a microbial antigen
.
Nature
360
, 593–597 (1992). [
PubMed
]
[
Google Scholar
]
31.
Miescher G. C., Howe R. C., Lees R. K. & MacDonald H. R.
CD3-associated alpha/beta and gamma/delta heterodimeric receptors are expressed by distinct populations of CD4- CD8- thymocytes
.
J. Immunol.
140
, 1779–1782 (1988). [
PubMed
]
[
Google Scholar
]
32.
Lantz O. & Bendelac A.
An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans
.
J. Exp. Med.
180
, 1097–1106 (1994).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
33.
Teh H. S.
et al.
Thymic major histocompatibility complex antigens and the alpha beta T-cell receptor determine the CD4/CD8 phenotype of T cells
.
Nature
335
, 229–233 (1988). [
PubMed
]
[
Google Scholar
]
34.
Li J. et al.
KIR+CD8+ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19
.
Science
376
, eabi9591 (2022).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
35.
Elhanati Y., Sethna Z., Callan C. G. Jr, Mora T. & Walczak A. M.
Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination
.
Immunol. Rev.
284
, 167–179 (2018).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
36.
Rubelt F. et al.
Individual heritable differences result in unique cell lymphocyte receptor repertoires of naïve and antigen-experienced cells
.
Nat. Commun.
7
, 11112 (2016).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
38.
Zeldovich K. B., Berezovsky I. N. & Shakhnovich E. I.
Protein and DNA sequence determinants of thermophilic adaptation
.
PLoS Comput. Biol.
3
, e5 (2007).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
39.
Egorov E. S.
et al.
The Changing Landscape of Naive T Cell Receptor Repertoire With Human Aging
.
Front. Immunol.
9
, 1618 (2018).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
40.
Janeway C. A. Jr, Travers P. & Walport M.
The rearrangement of antigen-receptor gene segments controls lymphocyte development
. :
The Immune System
… (2001).
[
Google Scholar
]
41.
Manfras B. J., Terjung D. & Boehm B. O.
Non-productive human TCR β chain genes represent VDJ diversity before selection upon function: insight into biased usage of TCRBD and TCRBJ genes and diversity of CDR3 region length
.
Hum. Immunol.
60
, 1090–1100 (1999). [
PubMed
]
[
Google Scholar
]
42.
Zhang W. et al.
A framework for highly multiplexed dextramer mapping and prediction of T cell receptor sequences to antigen specificity
.
Sci Adv
7
, (2021).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
43.
Chiang D. et al.
Single-cell profiling of peanut-responsive T cells in patients with peanut allergy reveals heterogeneous effector TH2 subsets
.
J. Allergy Clin. Immunol.
141
, 2107–2120 (2018).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
44.
Rajasekaran K. et al.
Tetramer-aided sorting and single-cell RNA sequencing facilitate transcriptional profiling of antigen-specific CD8+ T cells
.
Transl. Oncol.
27
, 101559 (2023).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
45.
Solouki S. et al.
TCR Signal Strength and Antigen Affinity Regulate CD8+ Memory T Cells
.
J. Immunol.
205
, 1217–1227 (2020).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
46.
Rock K. L., Reits E. & Neefjes J.
Present Yourself! By MHC Class I and MHC Class II Molecules
.
Trends Immunol
.
37
, 724–737 (2016).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
47.
Van Rhijn I., Godfrey D. I., Rossjohn J. & Moody D. B.
Lipid and small-molecule display by CD1 and MR1
.
Nat. Rev. Immunol.
15
, 643–654 (2015).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
48.
Scott-Browne J. P., White J., Kappler J. W., Gapin L. & Marrack P.
Germline-encoded amino acids in the alphabeta T-cell receptor control thymic selection
.
Nature
458
, 1043–1046 (2009).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
49.
Deibel M. R. Jr
et al.
Expression of terminal deoxynucleotidyl transferase in human thymus during ontogeny and development
.
J. Immunol.
131
, 195–200 (1983). [
PubMed
]
[
Google Scholar
]
51.
Berzins S. P., Cochrane A. D., Pellicci D. G., Smyth M. J. & Godfrey D. I.
Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples
.
Eur. J. Immunol.
35
, 1399–1407 (2005). [
PubMed
]
[
Google Scholar
]
53.
Leeansyah E., Loh L., Nixon D. F. & Sandberg J. K.
Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development
.
Nat. Commun.
5
, 3143 (2014).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
54.
López-Sagaseta J. et al.
The molecular basis for Mucosal-Associated Invariant T cell recognition of MR1 proteins
.
Proc. Natl. Acad. Sci. U. S. A.
110
, E1771–8 (2013).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
55.
Patel O. et al.
Recognition of vitamin B metabolites by mucosal-associated invariant T cells
.
Nat. Commun.
4
, 2142 (2013). [
PubMed
]
[
Google Scholar
]
56.
Zareie P. et al.
Canonical T cell receptor docking on peptide–MHC is essential for T cell signaling
.
Science
372
, eabe9124 (2021). [
PubMed
]
[
Google Scholar
]
57.
Ernst B., Lee D. S., Chang J. M., Sprent J. & Surh C. D.
The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery
.
Immunity
11
, 173–181 (1999). [
PubMed
]
[
Google Scholar
]
58.
Mandl J. N., Monteiro J. P., Vrisekoop N. & Germain R. N.
T cell-positive selection uses self-ligand binding strength to optimize repertoire recognition of foreign antigens
.
Immunity
38
, 263–274 (2013).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
59.
Fulton R. B.
et al.
The TCR’s sensitivity to self peptide--MHC dictates the ability of naive CD8+ T cells to respond to foreign antigens
.
Nat. Immunol.
16
, 107 (2015).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
60.
Rocha B. & von Boehmer H.
Peripheral selection of the T cell repertoire
.
Science
251
, 1225–1228 (1991). [
PubMed
]
[
Google Scholar
]
62.
Korsunsky I. et al.
Fast, sensitive and accurate integration of single-cell data with Harmony
.
Nat. Methods
16
, 1289–1296 (2019).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
64.
Nathan A. et al.
Multimodally profiling memory T cells from a tuberculosis cohort identifies cell state associations with demographics, environment and disease
.
Nat. Immunol.
22
, 781–793 (2021).
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
65.
Amari S., Murata N., Muller K. R., Finke M. & Yang H. H.
Asymptotic statistical theory of overtraining and cross-validation
.
IEEE Trans. Neural Netw.
8
, 985–996 (1997). [
PubMed
]
[
Google Scholar
]
Articles from
bioRxiv
are provided here courtesy of
Cold Spring Harbor Laboratory Preprints