LightGBM是基于XGBoost的一款可以快速并行的树模型框架,内部集成了多种集成学习思路,在代码实现上对XGBoost的节点划分进行了改进,内存占用更低训练速度更快。

LightGBM官网:

参数介绍:

本文内容如下,原始代码获取方式见文末。

1 安装方法

LightGBM的安装非常简单,在Linux下很方便的就可以开启GPU训练。可以优先选用从pip安装,如果失败再从源码安装。

  • 安装方法:从源码安装
  • git clone --recursive https://github.com/microsoft/LightGBM ; 
    cd LightGBM
    mkdir build ; cd build
    cmake ..
    # 开启MPI通信机制,训练更快
    # cmake -DUSE_MPI=ON ..
    # GPU版本,训练更快
    # cmake -DUSE_GPU=1 ..
    make -j4
    
  • 安装方法:pip安装
  • # 默认版本
    pip install lightgbm
    # MPI版本
    pip install lightgbm --install-option=--mpi
    # GPU版本
    pip install lightgbm --install-option=--gpu
    

    2 调用方法

    在Python语言中LightGBM提供了两种调用方式,分为为原生的API和Scikit-learn API,两种方式都可以完成训练和验证。当然原生的API更加灵活,看个人习惯来进行选择。

    2.1 定义数据集

    df_train = pd.read_csv('https://cdn.coggle.club/LightGBM/examples/binary_classification/binary.train', header=None, sep='\t')
    df_test = pd.read_csv('https://cdn.coggle.club/LightGBM/examples/binary_classification/binary.test', header=None, sep='\t')
    W_train = pd.read_csv('https://cdn.coggle.club/LightGBM/examples/binary_classification/binary.train.weight', header=None)[0]
    W_test = pd.read_csv('https://cdn.coggle.club/LightGBM/examples/binary_classification/binary.test.weight', header=None)[0]
    y_train = df_train[0]
    y_test = df_test[0]
    X_train = df_train.drop(0, axis=1)
    X_test = df_test.drop(0, axis=1)
    num_train, num_feature = X_train.shape
    # create dataset for lightgbm
    # if you want to re-use data, remember to set free_raw_data=False
    lgb_train = lgb.Dataset(X_train, y_train,
                            weight=W_train, free_raw_data=False)
    lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train,
                           weight=W_test, free_raw_data=False)
    # generate feature names
    feature_name = ['feature_' + str(col) for col in range(num_feature)]
    gbm = lgb.train(params,
                    lgb_train,
                    num_boost_round=10,
                    valid_sets=lgb_train,  # eval training data
                    feature_name=feature_name,
                    categorical_feature=[21])
    

    2.3 模型保存与加载

    # save model to file
    gbm.save_model('model.txt')
    print('Dumping model to JSON...')
    model_json = gbm.dump_model()
    with open('model.json', 'w+') as f:
        json.dump(model_json, f, indent=4)
    

    2.4 查看特征重要性

    # feature names
    print('Feature names:', gbm.feature_name())
    # feature importances
    print('Feature importances:', list(gbm.feature_importance()))
    

    2.5 继续训练

    # continue training
    # init_model accepts:
    # 1. model file name
    # 2. Booster()
    gbm = lgb.train(params,
                    lgb_train,
                    num_boost_round=10,
                    init_model='model.txt',
                    valid_sets=lgb_eval)
    print('Finished 10 - 20 rounds with model file...')
    

    2.6 动态调整模型超参数

    # decay learning rates
    # learning_rates accepts:
    # 1. list/tuple with length = num_boost_round
    # 2. function(curr_iter)
    gbm = lgb.train(params,
                    lgb_train,
                    num_boost_round=10,
                    init_model=gbm,
                    learning_rates=lambda iter: 0.05 * (0.99 ** iter),
                    valid_sets=lgb_eval)
    print('Finished 20 - 30 rounds with decay learning rates...')
    # change other parameters during training
    gbm = lgb.train(params,
                    lgb_train,
                    num_boost_round=10,
                    init_model=gbm,
                    valid_sets=lgb_eval,
                    callbacks=[lgb.reset_parameter(bagging_fraction=[0.7] * 5 + [0.6] * 5)])
    print('Finished 30 - 40 rounds with changing bagging_fraction...')
    

    2.7 自定义损失函数

    # self-defined objective function
    # f(preds: array, train_data: Dataset) -> grad: array, hess: array
    # log likelihood loss
    def loglikelihood(preds, train_data):
        labels = train_data.get_label()
        preds = 1. / (1. + np.exp(-preds))
        grad = preds - labels
        hess = preds * (1. - preds)
        return grad, hess
    # self-defined eval metric
    # f(preds: array, train_data: Dataset) -> name: string, eval_result: float, is_higher_better: bool
    # binary error
    # NOTE: when you do customized loss function, the default prediction value is margin
    # This may make built-in evalution metric calculate wrong results
    # For example, we are doing log likelihood loss, the prediction is score before logistic transformation
    # Keep this in mind when you use the customization
    def binary_error(preds, train_data):
        labels = train_data.get_label()
        preds = 1. / (1. + np.exp(-preds))
        return 'error', np.mean(labels != (preds > 0.5)), False
    gbm = lgb.train(params,
                    lgb_train,
                    num_boost_round=10,
                    init_model=gbm,
                    fobj=loglikelihood,
                    feval=binary_error,
                    valid_sets=lgb_eval)
    print('Finished 40 - 50 rounds with self-defined objective function and eval metric...')
    

    2.8 调参方法

    For Faster Speed

  • Use bagging by setting bagging_fraction and bagging_freq
  • Use feature sub-sampling by setting feature_fraction
  • Use small max_bin
  • Use save_binary to speed up data loading in future learning
  • Use parallel learning, refer to Parallel Learning Guide <./Parallel-Learning-Guide.rst>__
  • For Better Accuracy

  • Use large max_bin (may be slower)
  • Use small learning_rate with large num_iterations
  • Use large num_leaves (may cause over-fitting)
  • Use bigger training data
  • Try dart
  • Deal with Over-fitting

  • Use small max_bin
  • Use small num_leaves
  • Use min_data_in_leaf and min_sum_hessian_in_leaf
  • Use bagging by set bagging_fraction and bagging_freq
  • Use feature sub-sampling by set feature_fraction
  • Use bigger training data
  • Try lambda_l1lambda_l2 and min_gain_to_split for regularization
  • Try max_depth to avoid growing deep tree
  • Try extra_trees
  • Try increasing path_smooth
  • lg = lgb.LGBMClassifier(silent=False)
    param_dist = {"max_depth": [4,5, 7],
                  "learning_rate" : [0.01,0.05,0.1],
                  "num_leaves": [300,900,1200],
                  "n_estimators": [50, 100, 150]
    grid_search = GridSearchCV(lg, n_jobs=-1, param_grid=param_dist, cv = 5, scoring="roc_auc", verbose=5)
    grid_search.fit(train,y_train)
    grid_search.best_estimator_, grid_search.best_score_
    

    贝叶斯优化

    import warnings
    import time
    warnings.filterwarnings("ignore")
    from bayes_opt import BayesianOptimization
    def lgb_eval(max_depth, learning_rate, num_leaves, n_estimators):
        params = {
                 "metric" : 'auc'
        params['max_depth'] = int(max(max_depth, 1))
        params['learning_rate'] = np.clip(0, 1, learning_rate)
        params['num_leaves'] = int(max(num_leaves, 1))
        params['n_estimators'] = int(max(n_estimators, 1))
        cv_result = lgb.cv(params, d_train, nfold=5, seed=0, verbose_eval =200,stratified=False)
        return 1.0 * np.array(cv_result['auc-mean']).max()
    lgbBO = BayesianOptimization(lgb_eval, {'max_depth': (4, 8),
                                                'learning_rate': (0.05, 0.2),
                                                'num_leaves' : (20,1500),
                                                'n_estimators': (5, 200)}, random_state=0)
    lgbBO.maximize(init_points=5, n_iter=50,acq='ei')
    print(lgbBO.max)