相关文章推荐
怕考试的茶壶  ·  df = ...·  5 月前    · 
侠义非凡的红金鱼  ·  GCC ...·  1 年前    · 

The activation of T cells is triggered by the interactions of T cell receptors (TCRs) with their epitopes, which are peptides presented by major histocompatibility complex (MHC) on the surfaces of antigen presenting cells (APC). While each TCR can only recognize a specific subset from a large repertoire of peptide-MHC (pMHC) complexes, it is very often that peptides in this subset share little sequence similarity. This is known as the specificity and cross-reactivity of T cells, respectively. The binding affinities between different types of TCRs and pMHC are the major driving force to shape this specificity and cross-reactivity in T cell recognition. The binding affinities, furthermore, are determined by the sequence and structural properties at the interfaces between TCRs and pMHC. Fortunately, a wealth of data on binding and structures of TCR-pMHC interactions becomes publicly accessible in online resources, which offers us the opportunity to develop a random forest classifier for predicting the binding affinities between TCR and pMHC based on the structure of their complexes. Specifically, the structure and sequence of a given complex were projected onto a high-dimensional feature space as the input of the classifier, which was then trained by a large-scale benchmark dataset. Based on the cross-validation results, we found that our machine learning model can predict if the binding affinity of a given TCR-pMHC complex is stronger or weaker than a predefined threshold with an overall accuracy approximately around 75 %. The significance of our prediction was estimated by statistical analysis. Moreover, more than 60 % of binding affinities in the ATLAS database can be successfully classified into groups within the range of 2 kcal/mol. Additionally, we show that TCR-pMHC complexes with strong binding affinity prefer hydrophobic interactions between amino acids with large aromatic rings instead of electrostatic interactions. Our results therefore provide insights to design engineered TCRs which enhance the specificity for their targeted epitopes. Taken together, this method can serve as a useful addition to a suite of existing approaches which study binding between TCR and pMHC.

中文翻译:

T 细胞的激活由 T 细胞受体 (TCR) 与其表位的相互作用触发,表位是由抗原呈递细胞 (APC) 表面上的主要组织相容性复合体 (MHC) 呈递的肽。虽然每个 TCR 只能识别来自大量肽-MHC (pMHC) 复合物的特定子集,但该子集中的肽通常几乎没有序列相似性。这分别称为 T 细胞的特异性和交叉反应性。不同类型的 TCR 和 pMHC 之间的结合亲和力是形成 T 细胞识别中这种特异性和交叉反应性的主要驱动力。此外,结合亲和力由 TCR 和 pMHC 之间界面处的序列和结构特性决定。幸运的是,关于 TCR-pMHC 相互作用的结合和结构的大量数据可以在在线资源中公开访问,这为我们提供了开发随机森林分类器的机会,用于根据其复合物的结构预测 TCR 和 pMHC 之间的结合亲和力。具体来说,将给定复合体的结构和序列投影到高维特征空间作为分类器的输入,然后由大规模基准数据集训练。根据交叉验证结果,我们发现我们的机器学习模型可以预测给定 TCR-pMHC 复合物的结合亲和力是强于还是弱于预定义的阈值,总体准确度约为 75%。我们预测的显着性是通过统计分析来估计的。而且,ATLAS 数据库中超过 60% 的结合亲和力可以成功地分为 2 kcal/mol 范围内的组。此外,我们表明具有强结合亲和力的 TCR-pMHC 复合物更喜欢具有大芳环的氨基酸之间的疏水相互作用,而不是静电相互作用。因此,我们的结果为设计工程化 TCR 提供了见解,这些 TCR 增强了其靶向表位的特异性。总之,这种方法可以作为一套现有方法的有用补充,这些方法研究 TCR 和 pMHC 之间的结合。我们表明具有强结合亲和力的 TCR-pMHC 复合物更喜欢具有大芳环的氨基酸之间的疏水相互作用,而不是静电相互作用。因此,我们的结果为设计工程化 TCR 提供了见解,这些 TCR 增强了其靶向表位的特异性。总之,这种方法可以作为一套现有方法的有用补充,这些方法研究 TCR 和 pMHC 之间的结合。我们表明具有强结合亲和力的 TCR-pMHC 复合物更喜欢具有大芳环的氨基酸之间的疏水相互作用,而不是静电相互作用。因此,我们的结果为设计工程化 TCR 提供了见解,这些 TCR 增强了其靶向表位的特异性。总之,这种方法可以作为一套现有方法的有用补充,这些方法研究 TCR 和 pMHC 之间的结合。