如果第一个参数是xarray,维度是xdimesion,
第二个参数是yarray,维度是ydimesion。
那么生成的第一个二维数组是
以xarray为行,共ydimesion行
的向量;
而第二个二维数组是
以yarray的转置为列,共xdimesion列
的向量。
二、 mgrid函数
用法:返回多维结构,常见的如2D图形,3D图形。对比np.meshgrid,在
处理大数据时速度更快
,且能
处理多维
(np.meshgrid只能处理2维)
ret = np.mgrid[ 第1维,第2维 ,第3维 , …]
返回多值,以多个矩阵的形式返回,
第1返回值为第1维数据在最终结构中的分布,
第2返回值为第2维数据在最终结构中的分布,以此类推。(分布以矩阵形式呈现)
例如np.mgrid[X , Y]
样本(i,j)的坐标为 (X[i,j] ,Y[i,j]),X代表第1维,Y代表第2维,在此例中分别为横纵坐标。
例如1D结构(array),如下:
In [2]: import numpy as np
In [3]: pp=np.mgrid[-5:5:5j]
In [4]: pp
Out[4]: array([-5. , -2.5, 0. , 2.5, 5. ])
例如2D结构 (2D矩阵),如下:
>>> pp = np.mgrid[-1:1:2j,-2:2:3j]
>>> x , y = pp
array([[-1., -1., -1.],
[ 1., 1., 1.]])
array([[-2., 0., 2.],
[-2., 0., 2.]])
例如3D结构 (3D立方体),如下:
>>> pp = np.mgrid[-1:1:2j,-2:2:3j,-3:3:5j]
>>> print pp
[[[[-1. -1. -1. -1. -1. ]
[-1. -1. -1. -1. -1. ]
[-1. -1. -1. -1. -1. ]]
[[ 1. 1. 1. 1. 1. ]
[ 1. 1. 1. 1. 1. ]
[ 1. 1. 1. 1. 1. ]]]
[[[-2. -2. -2. -2. -2. ]
[ 0. 0. 0. 0. 0. ]
[ 2. 2. 2. 2. 2. ]]
[[-2. -2. -2. -2. -2. ]
[ 0. 0. 0. 0. 0. ]
[ 2. 2. 2. 2. 2. ]]]
[[[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]]
[[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]]]]
三、meshgrid 和 mgrid 的区别
mgrid[[1:3:3j, 4:5:2j]]
3j:3个点
-
-
步长为复数表示点数,左闭右闭
-
步长为实数表示间隔,左闭右开