首先,这段代码是
沉重地
借用马蒂奥-曼奇尼的说法,他描述说
here
而且他有
在MIT许可下发布
.
在原始代码中,没有使用networkx,所以很明显你实际上不需要networkx来完成你的目标。 如果这不是一个严格的要求,我会考虑使用他的原始代码,并重新修改以适应你的输入数据。
既然你把networkx列为要求,我就简单地重写了他的代码,取了一个networkx
Graph
对象,带有某些节点属性,如
'color'
和
'coord'
,在最后的plotly scatter中用于这些标记特征。 我只是选择了数据集中的前十个点来涂成红色,这就是为什么它们没有被分组。
完整的可复制粘贴的代码在下面。这里的截图显然不是交互式的,但你可以试试这个演示
这里是Google Colab
.
如果在Linux/Mac上的Jupyter笔记本中,要下载文件。
!wget https://github.com/matteomancini/neurosnippets/raw/master/brainviz/interactive-network/lh.pial.obj
!wget https://github.com/matteomancini/neurosnippets/raw/master/brainviz/interactive-network/icbm_fiber_mat.txt
!wget https://github.com/matteomancini/neurosnippets/raw/master/brainviz/interactive-network/fs_region_centers_68_sort.txt
!wget https://github.com/matteomancini/neurosnippets/raw/master/brainviz/interactive-network/freesurfer_regions_68_sort_full.txt
Otherwise: download the required files here.
Code:
import numpy as np
import plotly.graph_objects as go
import networkx as nx # New dependency
def obj_data_to_mesh3d(odata):
# odata is the string read from an obj file
vertices = []
faces = []
lines = odata.splitlines()
for line in lines:
slist = line.split()
if slist:
if slist[0] == 'v':
vertex = np.array(slist[1:], dtype=float)
vertices.append(vertex)
elif slist[0] == 'f':
face = []
for k in range(1, len(slist)):
face.append([int(s) for s in slist[k].replace('//','/').split('/')])
if len(face) > 3: # triangulate the n-polyonal face, n>3
faces.extend([[face[0][0]-1, face[k][0]-1, face[k+1][0]-1] for k in range(1, len(face)-1)])
else:
faces.append([face[j][0]-1 for j in range(len(face))])
else: pass
return np.array(vertices), np.array(faces)
with open("lh.pial.obj", "r") as f:
obj_data = f.read()
[vertices, faces] = obj_data_to_mesh3d(obj_data)
vert_x, vert_y, vert_z = vertices[:,:3].T
face_i, face_j, face_k = faces.T
cmat = np.loadtxt('icbm_fiber_mat.txt')
nodes = np.loadtxt('fs_region_centers_68_sort.txt')
labels=[]
with open("freesurfer_regions_68_sort_full.txt", "r") as f:
for line in f:
labels.append(line.strip('\n'))
# Instantiate Graph and add nodes (with their coordinates)
G = nx.Graph()
for idx, node in enumerate(nodes):
G.add_node(idx, coord=node)
# Add made-up colors for the nodes as node attribute
colors_data = {node: ('gray' if node > 10 else 'red') for node in G.nodes}
nx.set_node_attributes(G, colors_data, name="color")
# Add edges
[source, target] = np.nonzero(np.triu(cmat)>0.01)
edges = list(zip(source, target))
G.add_edges_from(edges)
# Get node coordinates from node attribute
nodes_x = [data['coord'][0] for node, data in G.nodes(data=True)]
nodes_y = [data['coord'][1] for node, data in G.nodes(data=True)]
nodes_z = [data['coord'][2] for node, data in G.nodes(data=True)]
edge_x = []
edge_y = []
edge_z = []
for s, t in edges:
edge_x += [nodes_x[s], nodes_x[t]]
edge_y += [nodes_y[s], nodes_y[t]]
edge_z += [nodes_z[s], nodes_z[t]]
# Get node colors from node attribute
node_colors = [data['color'] for node, data in G.nodes(data=True)]
fig = go.Figure()
# Changed color and opacity kwargs
fig.add_trace(go.Mesh3d(x=vert_x, y=vert_y, z=vert_z, i=face_i, j=face_j, k=face_k,
color='gray', opacity=0.1, name='', showscale=False, hoverinfo='none'))
fig.add_trace(go.Scatter3d(x=nodes_x, y=nodes_y, z=nodes_z, text=labels,
mode='markers', hoverinfo='text', name='Nodes',
marker=dict(
size=5, # Changed node size...
color=node_colors # ...and color
fig.add_trace(go.Scatter3d(x=edge_x, y=edge_y, z=edge_z,
mode='lines', hoverinfo='none', name='Edges',
opacity=0.3, # Added opacity kwarg
line=dict(color='pink') # Added line color
fig.update_layout(
scene=dict(
xaxis=dict(showticklabels=False, visible=False),
yaxis=dict(showticklabels=False, visible=False),
zaxis=dict(showticklabels=False, visible=False),
width=800, height=600
fig.show()