对Customer_Info.csv使用kmeans算法,进行银行客户分组画像,使用Python进行编译

111浏览 · 2024-02-19 08:02:48
好的,以下是一个使用Python实现对Customer_Info.csv进行KMeans聚类分析的示例代码: ```python import pandas as pd from sklearn.cluster import KMeans import matplotlib.pyplot as plt # 读取数据 df = pd.read_csv('Customer_Info.csv') # 数据预处理 df = df.dropna() # 删除空值行 df = df[['age', 'income', 'expenses', 'savings']] # 选择相关特征 # KMeans聚类 sse = [] for k in range(1, 11): kmeans = KMeans(n_clusters=k, random_state=42) kmeans.fit(df) sse.append(kmeans.inertia_) # 肘部法则确定K值 plt.plot(range(1, 11), sse) plt.title('Elbow Method') plt.xlabel('Number of Clusters') plt.ylabel('SSE') plt.show() # 选择K=3进行聚类 kmeans = KMeans(n_clusters=3, random_state=42) kmeans.fit(df) labels = kmeans.labels_ # 绘制散点图 plt.scatter(df['income']