vis_clevs = [0, 0.2, 0.5, 1, 2, 3, 5, 10, 20, 30, 9999],
vis_colors = ['#642B00', '#9A00FF', '#FE0300', '#F95C00', '#FDB157', '#FFFF00', '#76FD2C', '#94E0EC', '#C7ECFF', '#FFFFFF']
fig = plt.figure(figsize=(16, 8))
ax = fig.add_axes([-0.00001, 0, 1.00001, 1])
sf = shapefile.Reader(shppath + '.shp') # encoding='utf-8' 默认 utf-8 也可以设置别的
m = Basemap(llcrnrlon=left_lon, urcrnrlon=right_lon,
llcrnrlat=left_lat, urcrnrlat=right_lat, resolution='l', ax=ax)
# 添加自定义 色卡 和值
cmap_mosaic = mpl.colors.ListedColormap(colors)
norm = mpl.colors.BoundaryNorm(clevss, ncolors=cmap_mosaic.N, clip=True)
im1 = m.contourf(lons, lats, data, levels=clevss, norm=norm, cmap=cmap_mosaic)
clip, vertices = clip_region(sf, ax)
for cour in im1.collections:
cour.set_clip_path(clip)
def clip_region(sf, ax):
把地图按照shape文件裁切
:param sf:
:param ax:
:return:
for shape_rec in sf.shapeRecords():
vertices = []
codes = []
pts = shape_rec.shape.points
prt = list(shape_rec.shape.parts) + [len(pts)]
for i in range(len(prt) - 1):
for j in range(prt[i], prt[i + 1]):
vertices.append((pts[j][0], pts[j][1]))
codes += [matplotlib.path.Path.MOVETO]
codes += [matplotlib.path.Path.LINETO] * (prt[i + 1] - prt[i] - 2)
codes += [matplotlib.path.Path.CLOSEPOLY]
clip = matplotlib.path.Path(vertices, codes)
clip = matplotlib.patches.PathPatch(clip, transform=ax.transData)
return clip, vertices
def wgs84toWebMercator(lon, lat):
将经纬度转为web墨卡托下的坐标,转换公式如下
:param lon: 经度,需传入numpy数组,范围为[-180,180]
:param lat: 纬度,需传入numpy数组,范围为[-85.05,85.05]
:return:x,横坐标,对应于经度;y,纵坐标,对应于纬度
x = lon * 20037508.342789 / 180
y = np.log(np.tan((90 + lat) * np.pi / 360)) / (np.pi / 180)
y = y * 20037508.34789 / 180
return x, y
def EqlLatLonToWebMerc(sPicName, nIsLevel=0):
将等经纬度图转为web墨卡托投影图
:param sPicName: 传入等经纬度图像全路径名称
:param nIsLevel: 是否为EC分层绘图
image = Image.open(sPicName)
data = np.array(Image.open(sPicName))
lon, lat = np.meshgrid(np.linspace(left_lon, right_lon, image.size[0]),
np.linspace(right_lat, left_lat, image.size[1]), )
color_r = data[:, :, 0]
color_g = data[:, :, 1]
color_b = data[:, :, 2]
color_a = data[:, :, 3]
lon_0, lon_1, lat_0, lat_1 = 60, 150, 0, 60 # 经纬度范围
if nIsLevel == 1:
resolution = 8000 # 设置分辨率
else:
resolution = 4000
all_x, all_y = wgs84toWebMercator(
np.array([lon_0, lon_1]), np.array([lat_0, lat_1]))
all_col = (all_x[1] - all_x[0]) / resolution
all_row = (all_y[1] - all_y[0]) / resolution
x, y = wgs84toWebMercator(lon, lat)
target_col = ((x - all_x[0]) / resolution)[0]
target_row = ((all_y[1] - y) / resolution)[:, 0]
f = insert_data2d(target_col, target_row, color_r, )
res_r = f(np.arange(int(all_col)), np.arange(int(all_row)))
f = insert_data2d(target_col, target_row, color_g, )
res_g = f(np.arange(int(all_col)), np.arange(int(all_row)))
f = insert_data2d(target_col, target_row, color_b, )
res_b = f(np.arange(int(all_col)), np.arange(int(all_row)))
f = insert_data2d(target_col, target_row, color_a, )
res_a = f(np.arange(int(all_col)), np.arange(int(all_row)))
Image.fromarray(np.dstack((res_r, res_g, res_b, res_a)
).astype('uint8')).save(sPicName)