欢迎关注微信公众号: 石杉的架构笔记(id:shishan100)
我的新课**《C2C 电商系统微服务架构120天实战训练营》 在公众号 儒猿技术窝**上线了,感兴趣的同学,可以点击下方链接了解详情:
一、写在前面
二、业务场景介绍
三、进一步思考
四、落地实现TCC分布式事务
(1)TCC实现阶段一:Try
(2)TCC实现阶段二:Confirm
(3)TCC实现阶段三:Cancel
五、总结与思考
一、写在前面
之前网上看到很多写分布式事务的文章,不过大多都是将分布式事务各种技术方案简单介绍一下。很多朋友看了不少文章,还是不知道分布式事务到底怎么回事,在项目里到底如何使用。
所以咱们这篇文章,就用大白话+手工绘图,并结合一个电商系统的案例实践,来给大家讲清楚到底什么是TCC分布式事务。
首先说一下,这里可能会牵扯到一些Spring Cloud的原理,如果有不太清楚的同学,可以参考之前的文章:《拜托,面试请不要再问我Spring Cloud底层原理!》。
二、业务场景介绍
咱们先来看看业务场景,假设你现在有一个电商系统,里面有一个支付订单的场景。
那对一个订单支付之后,我们需要做下面的步骤:
这是一系列比较真实的步骤,无论大家有没有做过电商系统,应该都能理解。
三、进一步思考
好,业务场景有了,现在我们要更进一步,实现一个TCC分布式事务的效果。
什么意思呢?也就是说,订单服务-修改订单状态,库存服务-扣减库存,积分服务-增加积分,仓储服务-创建销售出库单。
上述这几个步骤,要么一起成功,要么一起失败, 必须是一个整体性的事务 。
举个例子,现在订单的状态都修改为“已支付”了,结果库存服务扣减库存失败。那个商品的库存原来是100件,现在卖掉了2件,本来应该是98件了。
结果呢?由于库存服务操作数据库异常,导致库存数量还是100。这不是在坑人么,当然不能允许这种情况发生了!
但是如果你不用TCC分布式事务方案的话,就用个Spring Cloud开发这么一个微服务系统,很有可能会干出这种事儿来。
我们来看看下面的这个图,直观的表达了上述的过程。
所以说,我们有必要使用TCC分布式事务机制来保证各个服务形成一个整体性的事务。
上面那几个步骤,要么全部成功,如果任何一个服务的操作失败了,就全部一起回滚,撤销已经完成的操作。
比如说库存服务要是扣减库存失败了,那么订单服务就得撤销那个修改订单状态的操作,然后得停止执行增加积分和通知出库两个操作。
说了那么多,老规矩,给大家上一张图,大伙儿顺着图来直观的感受一下。
四、落地实现TCC分布式事务
那么现在到底要如何来实现一个TCC分布式事务,使得各个服务,要么一起成功?要么一起失败呢?
大家稍安勿躁,我们这就来一步一步的分析一下。咱们就以一个Spring Cloud开发系统作为背景来解释。
1、TCC实现阶段一:Try
首先,订单服务那儿,他的代码大致来说应该是这样子的:
如果你之前看过Spring Cloud架构原理那篇文章,同时对Spring Cloud有一定的了解的话,应该是可以理解上面那段代码的。
其实就是订单服务完成本地数据库操作之后,通过Spring Cloud的Feign来调用其他的各个服务罢了。
但是光是凭借这段代码,是不足以实现TCC分布式事务的啊?!兄弟们,别着急,我们对这个订单服务修改点儿代码好不好。
首先,上面那个订单服务先把自己的状态修改为: OrderStatus.UPDATING 。
这是啥意思呢?也就是说,在pay()那个方法里,你别直接把订单状态修改为已支付啊!你先把订单状态修改为 UPDATING ,也就是修改中的意思。
这个状态是个没有任何含义的这么一个状态,代表有人正在修改这个状态罢了。
然后呢,库存服务直接提供的那个reduceStock()接口里,也别直接扣减库存啊,你可以是 冻结掉库存 。
举个例子,本来你的库存数量是100,你别直接100 - 2 = 98,扣减这个库存!
你可以把可销售的库存:100 - 2 = 98,设置为98没问题,然后在一个单独的冻结库存的字段里,设置一个2。也就是说,有2个库存是给冻结了。
积分服务的addCredit()接口也是同理,别直接给用户增加会员积分。你可以先在积分表里的一个 预增加积分字段 加入积分。
比如:用户积分原本是1190,现在要增加10个积分,别直接1190 + 10 = 1200个积分啊!
你可以保持积分为1190不变,在一个预增加字段里,比如说prepare_add_credit字段,设置一个10,表示有10个积分准备增加。
仓储服务的saleDelivery()接口也是同理啊,你可以先创建一个销售出库单,但是这个销售出库单的状态是“ UNKNOWN ”。
也就是说,刚刚创建这个销售出库单,此时还不确定他的状态是什么呢!
上面这套改造接口的过程,其实就是所谓的TCC分布式事务中的第一个T字母代表的阶段,也就是 Try阶段 。
总结上述过程,如果你要实现一个TCC分布式事务,首先你的业务的主流程以及各个接口提供的业务含义,不是说直接完成那个业务操作,而是完成一个Try的操作。
这个操作,一般都是锁定某个资源,设置一个预备类的状态,冻结部分数据,等等,大概都是这类操作。
咱们来一起看看下面这张图,结合上面的文字,再来捋一捋这整个过程。
2、TCC实现阶段二:Confirm
然后就分成两种情况了,第一种情况是比较理想的,那就是各个服务执行自己的那个Try操作,都执行成功了,bingo!
这个时候,就需要依靠 TCC分布式事务框架 来推动后续的执行了。
这里简单提一句,如果你要玩儿TCC分布式事务,必须引入一款TCC分布式事务框架,比如国内开源的 ByteTCC、himly、tcc-transaction。
否则的话,感知各个阶段的执行情况以及推进执行下一个阶段的这些事情,不太可能自己手写实现,太复杂了。
如果你在各个服务里引入了一个TCC分布式事务的框架, 订单服务里内嵌的那个TCC分布式事务框架可以感知到 ,各个服务的Try操作都成功了。
此时,TCC分布式事务框架会控制进入TCC下一个阶段,第一个C阶段,也就是 Confirm阶段 。
为了实现这个阶段,你需要在各个服务里再加入一些代码。
比如说, 订单服务 里,你可以加入一个Confirm的逻辑,就是正式把订单的状态设置为“已支付”了,大概是类似下面这样子:
库存服务 也是类似的,你可以有一个InventoryServiceConfirm类,里面提供一个reduceStock()接口的Confirm逻辑,这里就是将之前冻结库存字段的2个库存扣掉变为0。
这样的话,可销售库存之前就已经变为98了,现在冻结的2个库存也没了,那就正式完成了库存的扣减。
积分服务 也是类似的,可以在积分服务里提供一个CreditServiceConfirm类,里面有一个addCredit()接口的Confirm逻辑,就是将预增加字段的10个积分扣掉,然后加入实际的会员积分字段中,从1190变为1120。
仓储服务 也是类似,可以在仓储服务中提供一个WmsServiceConfirm类,提供一个saleDelivery()接口的Confirm逻辑,将销售出库单的状态正式修改为“已创建”,可以供仓储管理人员查看和使用,而不是停留在之前的中间状态“UNKNOWN”了。
好了,上面各种服务的Confirm的逻辑都实现好了,一旦订单服务里面的TCC分布式事务框架感知到各个服务的Try阶段都成功了以后,就会执行各个服务的Confirm逻辑。
订单服务内的TCC事务框架会负责跟其他各个服务内的TCC事务框架进行通信,依次调用各个服务的Confirm逻辑。然后,正式完成各个服务的所有业务逻辑的执行。
同样,给大家来一张图,顺着图一起来看看整个过程。
好,这是比较正常的一种情况,那如果是异常的一种情况呢?
举个例子:在Try阶段,比如积分服务吧,他执行出错了,此时会怎么样?
那订单服务内的TCC事务框架是可以感知到的,然后他会决定对整个TCC分布式事务进行回滚。
也就是说,会执行各个服务的 第二个C阶段,Cancel阶段 。
同样,为了实现这个Cancel阶段,各个服务还得加一些代码。
首先 订单服务 ,他得提供一个OrderServiceCancel的类,在里面有一个pay()接口的Cancel逻辑,就是可以将订单的状态设置为“CANCELED”,也就是这个订单的状态是已取消。
库存服务 也是同理,可以提供reduceStock()的Cancel逻辑,就是将冻结库存扣减掉2,加回到可销售库存里去,98 + 2 = 100。
积分服务 也需要提供addCredit()接口的Cancel逻辑,将预增加积分字段的10个积分扣减掉。
仓储服务 也需要提供一个saleDelivery()接口的Cancel逻辑,将销售出库单的状态修改为“CANCELED”设置为已取消。
然后这个时候,订单服务的TCC分布式事务框架只要感知到了任何一个服务的Try逻辑失败了,就会跟各个服务内的TCC分布式事务框架进行通信,然后调用各个服务的Cancel逻辑。
大家看看下面的图,直观的感受一下。
好了,兄弟们,聊到这儿,基本上大家应该都知道TCC分布式事务具体是怎么回事了!
总结一下,你要玩儿TCC分布式事务的话:
首先需要选择某种TCC分布式事务框架 ,各个服务里就会有这个TCC分布式事务框架在运行。
然后你原本的一个接口,要改造为3个逻辑,Try-Confirm-Cancel 。
这就是所谓的 TCC分布式事务。
TCC分布式事务的核心思想,说白了,就是当遇到下面这些情况时,
先来Try一下,不要把业务逻辑完成,先试试看,看各个服务能不能基本正常运转,能不能先冻结我需要的资源。
如果Try都ok,也就是说,底层的数据库、redis、elasticsearch、MQ都是可以写入数据的,并且你保留好了需要使用的一些资源(比如冻结了一部分库存)。
接着,再执行各个服务的Confirm逻辑,基本上Confirm就可以很大概率保证一个分布式事务的完成了。
那如果Try阶段某个服务就失败了,比如说底层的数据库挂了,或者redis挂了,等等。
此时就自动执行各个服务的Cancel逻辑,把之前的Try逻辑都回滚,所有服务都不要执行任何设计的业务逻辑。 保证大家要么一起成功,要么一起失败 。
写到这里,本文差不多该结束了。等一等,你有没有想到一个问题?
如果有一些意外的情况发生了,比如说订单服务突然挂了,然后再次重启,TCC分布式事务框架是 如何保证之前没执行完的分布式事务继续执行的呢?
所以,TCC事务框架都是要记录一些分布式事务的活动日志的,可以在磁盘上的日志文件里记录,也可以在数据库里记录。保存下来分布式事务运行的各个阶段和状态。
问题还没完,万一某个服务的Cancel或者Confirm逻辑执行一直失败怎么办呢?
那也很简单,TCC事务框架会通过活动日志记录各个服务的状态。
举个例子,比如发现某个服务的Cancel或者Confirm一直没成功,会不停的重试调用他的Cancel或者Confirm逻辑,务必要他成功!
当然了,如果你的代码没有写什么bug,有充足的测试,而且Try阶段都基本尝试了一下,那么其实一般Confirm、Cancel都是可以成功的!
最后,再给大家来一张图,来看看给我们的业务,加上分布式事务之后的整个执行流程:
不少大公司里,其实都是自己研发TCC分布式事务框架的,专门在公司内部使用,比如我们就是这样。
不过如果自己公司没有研发TCC分布式事务框架的话,那一般就会选用开源的框架。
这里笔者给大家推荐几个比较不错的框架,都是咱们国内自己开源出去的: ByteTCC,tcc-transaction,himly 。
大家有兴趣的可以去他们的github地址,学习一下如何使用,以及如何跟Spring Cloud、Dubbo等服务框架整合使用。
只要把那些框架整合到你的系统里,很容易就可以实现上面那种奇妙的TCC分布式事务的效果了。
下一篇文章,我们来讲讲可靠消息最终一致性方案实现的分布式事务,同时聊聊在实际生产中遇到的运用该方案的高可用保障架构。
具体参见: 《最终一致性分布式事务的99.99%高可用保障生产实践》 。
如有收获,请帮忙转发,您的鼓励是作者最大的动力,谢谢!
一大波 微服务、分布式、高并发、高可用 的****原创系列
文章正在路上, 欢迎扫描下方二维码 ,持续关注:
石杉的架构笔记(id:shishan100)
十余年BAT架构经验倾囊相授