相关文章推荐
彷徨的匕首  ·  2022-02-18 Android ...·  1 年前    · 
私奔的炒饭  ·  使用 dotTrace 分析 .NET ...·  1 年前    · 
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Apr 20; 41(4): 555–561.
PMCID: PMC8110460

Language: Chinese | English

ENTPD5在上皮性卵巢癌组织中高表达:基于Oncomine数据库及生物信息学方法

ENTPD5 gene is highly expressed in epithelial ovarian cancer: analysis based on Oncomine database and bioinformatics

王 卉

南方医科大学第一临床医学院,广东 广州 510515, The first clinical college of Southern Medical University, Guangzhou 510515, China

Find articles by 王 卉

陈 学平

南方医科大学第一临床医学院,广东 广州 510515, The first clinical college of Southern Medical University, Guangzhou 510515, China

Find articles by 陈 学平

陈 运

南方医科大学第一临床医学院,广东 广州 510515, The first clinical college of Southern Medical University, Guangzhou 510515, China

Find articles by 陈 运

曹 颖诗

南方医科大学第一临床医学院,广东 广州 510515, The first clinical college of Southern Medical University, Guangzhou 510515, China

Find articles by 曹 颖诗

陈 瑶

南方医科大学第一临床医学院,广东 广州 510515, The first clinical college of Southern Medical University, Guangzhou 510515, China

Find articles by 陈 瑶

刘 国炳

南方医科大学南方医院妇产科,广东 广州 510515, Southern Medical University of Nanfang Hospital, Obstetrics and Gynecology Department, Guangzhou 510515, China

Find articles by 刘 国炳

黄 莉萍

南方医科大学南方医院妇产科,广东 广州 510515, Southern Medical University of Nanfang Hospital, Obstetrics and Gynecology Department, Guangzhou 510515, China 南方医科大学第一临床医学院,广东 广州 510515, The first clinical college of Southern Medical University, Guangzhou 510515, China 南方医科大学南方医院妇产科,广东 广州 510515, Southern Medical University of Nanfang Hospital, Obstetrics and Gynecology Department, Guangzhou 510515, China * P < 0.05, ** P < 0.01 vs normal tissue.

3

ENTPD5的表达与卵巢癌患者的临床病理特征之间的关系

Association of ENTPD5 expression with clinicopathological characteristics of 50 patients with EOC ( χ 2 -test)

Clinicopathological features ENTPD5 expression
Low expression High expression P
Age (year) < 56 13 13 0.01
≥56 4 20
FIGO staging Ⅰ+Ⅱ 5 8 0.74
Ⅲ+Ⅳ 12 25
CA125 (U/mL) < 600 12 22 0.78
≥600 5 11
Lymph node metastasis Positive 6 5 0.15
Nagetive 11 28
Omentum metastasis Positive 12 21 0.62
Nagetive 5 12

3. 讨论

虽然近年来卵巢癌的治疗取得一些进展 [ 10 ] ,但由于其发病隐匿,多数患者确诊时已处于肿瘤中晚期,甚至伴有局部或全身转移,五年生存率低下 [ 11 - 13 ] 。寻找与卵巢癌发病相关的有效生物标志物,提高卵巢癌的早期诊断,对改善其预后具有重要意义。

ENTPD5主要存在于内质网中,编码内质网的核苷酸水解酶,在其家族中唯一被描述为原癌蛋白成员,介导细胞内核苷酸的分解代谢 [ 14 ] ,通过PI3K信号通路的激活,以及Mut-p53与Sp1-ENTPD5启动子区相互作用两条途径过度表达后 [ 15 ] ,在多个层次参与细胞过程,抑制肿瘤细胞凋亡,促进肿瘤细胞发生、发展和转移,ENTPD5表达的下调可以降低肿瘤细胞的存活能力 [ 8 ] 。Villar等 [ 16 ] 在前列腺癌的相关研究中发现,ENTPD5表达水平与前列腺病变程度呈正相关性。2016年PNAS研究报道,作为突变的肿瘤抑制基因p53的靶分子,ENTPD5可以被突变的p53调控以调节胰腺癌的发展和转移 [ 17 ] 。此外,在黑色素瘤、宫颈癌、乳腺癌、结肠癌等多项研究中亦发现ENTPD5呈高表达,提示ENTPD5可能参与癌症的发生发展 [ 6 - 8 ]

目前,国内外尚未见ENTPD5与卵巢癌相关性的研究报道,ENTPD5是否可以成为上皮性卵巢癌早期诊断的新靶点值得进一步研究。基于上述研究背景,首先我们通过Oncomine及TCGA数据库证明,ENTPD5在上皮性卵巢癌组织中的表达显著高于正常卵巢组织,与患者生存呈负相关。进一步使用GSEA软件分析发现,ENTPD5参与B、T细胞介导的信号通路、ABC转运蛋白、WNT信号通路、胰岛素信号通路以及糖降解等过程。其中,在糖代谢的异常以及Ⅱ型糖尿病的发生过程中,机体长期暴露于高水平的血糖环境,可引起RasMAPK和PI 3-K-mTOR途径的激活,促进卵巢癌细胞增殖和疾病进展 [ 18 - 19 ] 。ABC转运蛋白也被发现具有促进肿瘤细胞的增殖、转移、免疫逃避、肿瘤耐药及维持肿瘤细胞低分化程度的功能 [ 20 - 23 ] 。WNT / PCP信号的激活被证实可通过增强上皮性卵巢癌细胞的自我更新和持续迁移、侵袭能力 [ 24 - 27 ] 。以上结果表明,ENTPD5可能通过上述多条通路参与上皮性卵巢癌的发生和发展。分析ENTPD5与上皮性卵巢癌免疫浸润的相关性发现,ENTPD5的表达与NK细胞、肥大细胞、嗜酸性粒细胞呈显著负相关。此类细胞可通过裂解、分泌或结合肿瘤坏死因子,介导肿瘤干细胞的选择和分化,抑制肿瘤细胞向远处组织的增殖、迁移和定植 [ 28 - 32 ] 。由此猜测,ENTPD5也可能通过影响肿瘤细胞局部微环境的方式,参与上皮性卵巢癌的发生和发展。通过RT-qPCR、Western blot及免疫组化等实验方法,对上述结论进行验证,证实ENTPD5在上皮性卵巢癌组织中表达显著增高。

综上所述,我们通过使用生物信息学手段深入挖掘上皮性卵巢癌组织中ENTPD5表达信息以及实验验证相结合的手段,证明ENTPD5在上皮性卵巢癌组织中表达显著增高,为ENTPD5成为上皮性卵巢癌早期诊断的新靶点提供了理论支持证据。相对于传统的单个实验样本的研究,肿瘤数据库具有样本量大、可信度高的优点,对疾病的诊治可提供有力的生物学依据,可为进一步探索ENTPD5基因与上皮性卵巢癌的关系奠定基础。

Biography

王卉,在读硕士研究生,E-mail: moc.qq@9000873272

Funding Statement

国家自然科学基金青年科学基金(81703078);广东省科技计划项目(2017A010105025)

Supported by Youth Program of National Natural Science Foundation of China (81703078)

References

1. 孙 瑶琦, 王 炼, 刘 洁, et al. 脂肪细胞与脂肪来源的干细胞在卵巢癌嗜脂性转移中的作用 中国肿瘤临床 2020; 47 (9):477–80. doi: 10.3969/j.issn.1000-8179.2020.09.407.
[孙瑶琦, 王炼, 刘洁, 等. 脂肪细胞与脂肪来源的干细胞在卵巢癌嗜脂性转移中的作用[J]. 中国肿瘤临床, 2020, 47(9): 477-80.] [ CrossRef ] [ Google Scholar ]
2. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. http://www.ncbi.nlm.nih.gov/pubmed/30207593 . CA Cancer J. Clin. 2018; 6 (8):394–424.
[Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J. Clin, 2018, 6(8): 394-424.] [ PubMed ] [ Google Scholar ]
3. 陈 萱, 黄 静莹, 吕 育纯. STAT2在卵巢癌中表达升高并与卵巢癌患者生存不良有关 http://www.j-smu.com:81/CN/10.12122/j.issn.1673-4254.2020.01.06 . 南方医科大学学报 2020; 40 (1):34–41.
[陈萱, 黄静莹, 吕育纯. STAT2在卵巢癌中表达升高并与卵巢癌患者生存不良有关[J]. 南方医科大学学报, 2020, 40(1): 34-41.] [ PMC free article ] [ PubMed ] [ Google Scholar ]
4. MacCarthy CM, Notario V. The ENTPD5/mt-PCPH oncoprotein is a catalytically inactive member of the ectonucleoside triphosphate diphosphohydrolase family. Int J Oncol. 2013; 43 (4):1244–52. doi: 10.3892/ijo.2013.2052.
[MacCarthy CM, Notario V. The ENTPD5/mt-PCPH oncoprotein is a catalytically inactive member of the ectonucleoside triphosphate diphosphohydrolase family[J]. Int J Oncol, 2013, 43(4): 1244-52.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. Fang M, Shen Z, Huang S, et al. The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway. Cell. 2010; 143 (5):711–24. doi: 10.1016/j.cell.2010.10.010.
[Fang M, Shen Z, Huang S, et al. The ER UDPase ENTPD5 promotes protein N-glycosylation, the Warburg effect, and proliferation in the PTEN pathway[J]. Cell, 2010, 143(5): 711-24.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Curry NL, Mino-Kenudson M, Oliver TG, et al. Pten-null tumors cohabiting the same lung display differential AKT activation and sensitivity to dietary restriction. Cancer Discov. 2013; 3 (8):908–21. doi: 10.1158/2159-8290.CD-12-0507.
[Curry NL, Mino-Kenudson M, Oliver TG, et al. Pten-null tumors cohabiting the same lung display differential AKT activation and sensitivity to dietary restriction[J]. Cancer Discov, 2013, 3(8): 908- 21.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Villar J, Arenas MI, MacCarthy CM, et al. PCPH/ENTPD5 expression enhances the invasiveness of human prostate cancer cells by a protein kinase C delta-dependent mechanism. Cancer Res. 2007; 67 (22):10859–68. doi: 10.1158/0008-5472.CAN-07-2041.
[Villar J, Arenas MI, MacCarthy CM, et al. PCPH/ENTPD5 expression enhances the invasiveness of human prostate cancer cells by a protein kinase C delta-dependent mechanism[J]. Cancer Res, 2007, 67(22): 10859-68.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Xue Y, Wu L, Liu Y, et al. ENTPD5 induces apoptosis in lung cancer cells via regulating caspase 3 expression. PLoS One. 2015; 10 (3):e0120046. doi: 10.1371/journal.pone.0120046.
[Xue Y, Wu L, Liu Y, et al. ENTPD5 induces apoptosis in lung cancer cells via regulating caspase 3 expression[J]. PLoS One, 2015, 10(3): e0120046.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. 李 小燕, 何 杰, 余 觅, et al. BUB1基因在胃癌组织中高表达: 基于Oncomine数据库及生物信息学方法 http://www.j-smu.com:81/CN/10.12122/j.issn.1673-4254.2020.05.11 . 南方医科大学学报 2020; 40 (5):683–92.
[李小燕, 何杰, 余觅, 等. BUB1基因在胃癌组织中高表达: 基于Oncomine数据库及生物信息学方法[J]. 南方医科大学学报, 2020, 40(5): 683-92.] [ Google Scholar ]
10. Chen S, Dai X, Gao Y, et al. The positivity of estrogen receptor and progesterone receptor may not be associated with metastasis and recurrence in epithelial ovarian cancer. Sci Rep. 2017; 7 (1):16922. doi: 10.1038/s41598-017-17265-6. doi: 10.1038/s41598-017-17265-6.
[Chen S, Dai X, Gao Y, et al. The positivity of estrogen receptor and progesterone receptor may not be associated with metastasis and recurrence in epithelial ovarian cancer[J]. Sci Rep, 2017, 7(1): 16922.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ CrossRef ] [ Google Scholar ]
11. Qian F, Rookus MA, Leslie G, et al. Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22, 588 BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2019; 121 (2):180–92. doi: 10.1038/s41416-019-0492-8. doi: 10.1038/s41416-019-0492-8.
[Qian F, Rookus MA, Leslie G, et al. Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22, 588 BRCA1 and BRCA2 mutation carriers[J]. Br J Cancer, 2019, 121(2): 180-92.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ CrossRef ] [ Google Scholar ]
12. Zhu CS, Pinsky PF, Cramer DW, et al. A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer. Cancer Prev Res: Phila. 2011; 4 (3):375–83. doi: 10.1158/1940-6207.CAPR-10-0193.
[Zhu CS, Pinsky PF, Cramer DW, et al. A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer[J]. Cancer Prev Res: Phila, 2011, 4(3): 375-83.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Cramer DW, Bast RC, Berg CD, et al. Ovarian cancer biomarker performance in prostate, lung, colorectal, and ovarian cancer screening trial specimens. Cancer Prev Res: Phila. 2011; 4 (3):365–74. doi: 10.1158/1940-6207.CAPR-10-0195.
[Cramer DW, Bast RC, Berg CD, et al. Ovarian cancer biomarker performance in prostate, lung, colorectal, and ovarian cancer screening trial specimens[J]. Cancer Prev Res: Phila, 2011, 4(3): 365-74.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. YuLiya K, Kenneth P. Epigenetic crosstalk between the tumor microenvironment and ovarian cancer cells: a therapeutic road less traveled. Cancers. 2018; 10 (9):295–6. doi: 10.3390/cancers10090295.
[YuLiya K, Kenneth P. Epigenetic crosstalk between the tumor microenvironment and ovarian cancer cells: a therapeutic road less traveled[J]. Cancers, 2018, 10(9): 295-6.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Durst MA, Ratia K, Lavie A. Identifying small molecule probes of ENTPD5 through high throughput screening. PLoS One. 2019; 14 (6):e0210305. doi: 10.1371/journal.pone.0210305.
[Durst MA, Ratia K, Lavie A. Identifying small molecule probes of ENTPD5 through high throughput screening[J]. PLoS One, 2019, 14 (6): e0210305.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Villar J, Quadri HS, Song I, et al. PCPH/ENTPD5 expression confers to prostate cancer cells resistance against cisplatin-induced apoptosis through protein kinase Calpha-mediated Bcl-2 stabilization. Cancer Res. 2009; 69 (1):102–10. doi: 10.1158/0008-5472.CAN-08-2922.
[Villar J, Quadri HS, Song I, et al. PCPH/ENTPD5 expression confers to prostate cancer cells resistance against cisplatin-induced apoptosis through protein kinase Calpha-mediated Bcl-2 stabilization[J]. Cancer Res, 2009, 69(1): 102-10.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. Vogiatzi F, Brandt DT, Schneikert J, et al. Mutant p53 promotes tumor progression and metastasis by the endoplasmic Reticulum UDPase ENTPD5. PNAS. 2016; 113 (52):E8433–42. doi: 10.1073/pnas.1612711114.
[Vogiatzi F, Brandt DT, Schneikert J, et al. Mutant p53 promotes tumor progression and metastasis by the endoplasmic Reticulum UDPase ENTPD5[J]. PNAS, 2016, 113(52): E8433-42.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Teplinsky E, Muggia F. Targeting HER2 in ovarian and uterine cancers: challenges and future directions. Gynecol Oncol. 2014; 135 (2):364–70. doi: 10.1016/j.ygyno.2014.09.003.
[Teplinsky E, Muggia F. Targeting HER2 in ovarian and uterine cancers: challenges and future directions[J]. Gynecol Oncol, 2014, 135(2): 364-70.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Minlikeeva AN, Freudenheim JL, Cannioto RA, et al. History of hypertension, heart disease, and diabetes and ovarian cancer patient survival: evidence from the ovarian cancer association consortium. Cancer Causes Control. 2017; 28 (5):469–86. doi: 10.1007/s10552-017-0867-1.
[Minlikeeva AN, Freudenheim JL, Cannioto RA, et al. History of hypertension, heart disease, and diabetes and ovarian cancer patient survival: evidence from the ovarian cancer association consortium [J]. Cancer Causes Control, 2017, 28(5): 469-86.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. Taichi M, Hiroshi M. The role of androgen receptor signaling in ovarian cancer. http://www.researchgate.net/publication/331228113_The_Role_of_Androgen_Receptor_Signaling_in_Ovarian_Cancer . Cells. 2019; 8 (2):1–76.
[Taichi M, Hiroshi M. The role of androgen receptor signaling in ovarian cancer[J]. Cells, 2019, 8(2): 1-76.] [ Google Scholar ]
21. Muriithi W, Macharia LW, Heming CP, et al. ABC transporters and the hallmarks of cancer: roles in cancer aggressiveness beyond multidrug resistance. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=CJCO202002001 . Cancer Biol Med. 2020; 17 (2):253–69.
[Muriithi W, Macharia LW, Heming CP, et al. ABC transporters and the hallmarks of cancer: roles in cancer aggressiveness beyond multidrug resistance[J]. Cancer Biol Med, 2020, 17(2): 253-69.] [ PMC free article ] [ PubMed ] [ Google Scholar ]
22. Ford RC, Beis K. Learning the ABCs one at a time: structure and mechanism of ABC transporters. Biochem Soc Trans. 2019; 47 (1):23–36. doi: 10.1042/BST20180147.
[Ford RC, Beis K. Learning the ABCs one at a time: structure and mechanism of ABC transporters[J]. Biochem Soc Trans, 2019, 47 (1): 23-36.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Romana B, Marco F. ABC transporters in cancer stem cells: beyond chemoresistance. http://pubmedcentralcanada.ca/pmcc/articles/PMC5713331/ Int J Mol Sci. 2017; 18 (11):23–62.
[Romana B, Marco F. ABC transporters in cancer stem cells: beyond chemoresistance[J]. Int J Mol Sci, 2017, 18(11): 23-62.] [ PMC free article ] [ PubMed ] [ Google Scholar ]
24. Bahrami A, Hasanzadeh M, ShahidSales S, et al. Clinical significance and prognosis value of wnt signaling pathway in cervical cancer. J Cell Biochem. 2017; 118 (10):3028–33. doi: 10.1002/jcb.25992.
[Bahrami A, Hasanzadeh M, ShahidSales S, et al. Clinical significance and prognosis value of wnt signaling pathway in cervical cancer[J]. J Cell Biochem, 2017, 118(10): 3028-33.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. Asem M, Buechler S, Wates B, et al. Wnt5a signaling in cancer. http://pubmedcentralcanada.ca/pmcc/articles/PMC5040981/ Cancers. 2012; 8 (9):79–80.
[Asem M, Buechler S, Wates B, et al. Wnt5a signaling in cancer[J]. Cancers, 2012, 8(9): 79-80.] [ Google Scholar ]
26. Kotrbová A, Ovesná P, Gybel' T, et al. WNT signaling inducing activity in ascites predicts poor outcome in ovarian cancer. Theranostics. 2020; 10 (2):537–52. doi: 10.7150/thno.37423.
[Kotrbová A, Ovesná P, Gybel' T, et al. WNT signaling inducing activity in ascites predicts poor outcome in ovarian cancer[J]. Theranostics, 2020, 10(2): 537-52.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. Ford C, Henry C, Llamosas E, et al. Wntsignalling in gynaecological cancers: a future target for personalisedmedicine. http://www.sciencedirect.com/science/article/pii/S0090825815301463 . Gynecol Oncol. 2016; 85 (9):345–51.
[Ford C, Henry C, Llamosas E, et al. Wntsignalling in gynaecological cancers: a future target for personalisedmedicine[J]? Gynecol Oncol, 2016, 85(9): 345-51.] [ PubMed ] [ Google Scholar ]
28. Anahid J, Janko K, Kawaljit K, et al. Natural killer cells: diverse functions in tumor Immol/Lunity and defects in pre-neoplastic and neoplastic stages of tumorigenesis. Mol Ther Oncolytics. 2020; 27 (5):41–52.
[Anahid J, Janko K, Kawaljit K, et al. Natural killer cells: diverse functions in tumor Immol/Lunity and defects in pre-neoplastic and neoplastic stages of tumorigenesis[J]. Mol Ther Oncolytics, 2020, 27 (5): 41-52.] [ PMC free article ] [ PubMed ] [ Google Scholar ]
29. Song W, Tong F, Yi J, et al. Natural killer cells in cancer biology and therapy. http://www.researchgate.net/publication/343482497_Natural_killer_cells_in_cancer_biology_and_therapy . Mol Cancer. 2020; 7 (6):2–26.
[Song W, Tong F, Yi J, et al. Natural killer cells in cancer biology and therapy[J]. Mol Cancer, 2020, 7(6): 2-26.] [ Google Scholar ]
30. Chiossone L, Dumas PY, Vienne M, et al. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018; 18 (11):671–88. doi: 10.1038/s41577-018-0061-z.
[Chiossone L, Dumas PY, Vienne M, et al. Natural killer cells and other innate lymphoid cells in cancer[J]. Nat Rev Immunol, 2018, 18 (11): 671-88.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. Varricchi G, Galdiero MR, Loffredo S, et al. Eosinophils: The unsung heroes in cancer. Oncoimmunology. 2018; 7 (2):e1393134. doi: 10.1080/2162402X.2017.1393134.
[Varricchi G, Galdiero MR, Loffredo S, et al. Eosinophils: The unsung heroes in cancer[J]? Oncoimmunology, 2018, 7(2): e1393134.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
32. Platzer B, Elpek K, Cremasco V, et al. IgE/F cepsilon RI-mediated antigen cross-presentation by dendritic cells enhances anti-tumor immol/lune responses. Cell Rep. 2015; 10 (9):1487–95. doi: 10.1016/j.celrep.2015.02.015.
[Platzer B, Elpek K, Cremasco V, et al. IgE/F cepsilon RI-mediated antigen cross-presentation by dendritic cells enhances anti-tumor immol/lune responses[J]. Cell Rep, 2015, 10(9): 1487-95.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University