The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health. Learn more about our disclaimer.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018 Jan; 32(1): 104–111.
PMCID: PMC8414200

Language: Chinese | English

胰岛移植治疗糖尿病的细胞来源研究进展

Research progress on the donor cell sources of pancreatic islet transplantation for treatment of diabetes mellitus

海涛 朱

西北妇女儿童医院儿内三科(西安 710061), Department of Pediatrics (No. 3 Ward), Northwest Women’s and Children’s Hospital, Xi’an Shaanxi, 710061, P.R.China 西安交通大学医学院第一附属医院肝胆外科(西安 710061), Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an Shaanxi, 710061, P.R.China

Find articles by 海涛 朱

小鸽 张

西北妇女儿童医院儿内三科(西安 710061), Department of Pediatrics (No. 3 Ward), Northwest Women’s and Children’s Hospital, Xi’an Shaanxi, 710061, P.R.China

Find articles by 小鸽 张

雅毅 贺

西北妇女儿童医院儿内三科(西安 710061), Department of Pediatrics (No. 3 Ward), Northwest Women’s and Children’s Hospital, Xi’an Shaanxi, 710061, P.R.China

Find articles by 雅毅 贺

良 于

西北妇女儿童医院儿内三科(西安 710061), Department of Pediatrics (No. 3 Ward), Northwest Women’s and Children’s Hospital, Xi’an Shaanxi, 710061, P.R.China

Find articles by 良 于

毅 吕

西北妇女儿童医院儿内三科(西安 710061), Department of Pediatrics (No. 3 Ward), Northwest Women’s and Children’s Hospital, Xi’an Shaanxi, 710061, P.R.China 西安交通大学医学院第一附属医院肝胆外科(西安 710061), Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an Shaanxi, 710061, P.R.China

Find articles by 毅 吕

凯丽 潘

西北妇女儿童医院儿内三科(西安 710061), Department of Pediatrics (No. 3 Ward), Northwest Women’s and Children’s Hospital, Xi’an Shaanxi, 710061, P.R.China

Find articles by 凯丽 潘

博 王

西北妇女儿童医院儿内三科(西安 710061), Department of Pediatrics (No. 3 Ward), Northwest Women’s and Children’s Hospital, Xi’an Shaanxi, 710061, P.R.China 西安交通大学医学院第一附属医院肝胆外科(西安 710061), Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an Shaanxi, 710061, P.R.China

Find articles by 博 王

国强 陈

西北妇女儿童医院儿内三科(西安 710061), Department of Pediatrics (No. 3 Ward), Northwest Women’s and Children’s Hospital, Xi’an Shaanxi, 710061, P.R.China 西北妇女儿童医院儿内三科(西安 710061), Department of Pediatrics (No. 3 Ward), Northwest Women’s and Children’s Hospital, Xi’an Shaanxi, 710061, P.R.China 西安交通大学医学院第一附属医院肝胆外科(西安 710061), Department of Hepatobiliary Surgery, the First Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an Shaanxi, 710061, P.R.China 西安交通大学医学院第一附属医院内分泌科(西安 710061), Department of Endocrinology, the First Affiliated Hospital, Medical School of Xi’an Jiaotong University, Xi’an Shaanxi, 710061, P.R.China 西安交通大学先进外科技术与工程研究所(西安 710061), Research Institute of Advanced Surgical Technology and Engineering, Xi’an Jiaotong University, Xi’an Shaanxi, 710061, P.R.China 西北妇女儿童医院儿内二科(西安 710061), Department of Pediatrics (No. 2 Ward), Northwest Women’s and Children’s Hospital, Xi’an Shaanxi, 710061, P.R.China

王博,Email: ten.haey@57gnawbob
陈国强,Email:

Keywords: Islet transplantation, donator, type 1 diabetes mellitus, stem cells, xenotransplantation

1 型糖尿病(type 1 diabetes mellitus,T1DM)是一种全球流行性的慢性自身免疫疾病,对人类健康危害极大 [ 1 - 3 ] 。外源性胰岛素输注是目前临床治疗 T1DM 的标准疗法,但其仍达不到理想的血糖控制,低血糖的发生和微血管病变进展的风险仍然存在。旨在重建内源性胰岛素分泌系统的 β 细胞替代治疗,因具有维持葡萄糖自稳态的优势,而逐渐成为关注与研究的热点 [ 4 - 7 ] 。目前,临床可用的 β 细胞替代治疗为胰腺移植(pancreas transplantation,PT)和胰岛移植(pancreatic islet transplantation,PIT) [ 8 - 10 ] 。自 2000 年加拿大 Edmontion 方案取得成功后 [ 11 ] ,随着免疫调节与细胞制备等技术的改进,PIT 后的血糖控制与长期(3 年、5 年)脱离胰岛素的比例现已基本接近 PT [ 12 - 16 ] 。与 PT 相比,PIT 具有手术风险低、操作简便、可体外修饰移植物及多次输注等优点,是一种极具前景的糖尿病治疗方法 [ 5 , 13 , 15 , 17 - 18 ] 。然而,和器官移植一样,PIT 面临的首要挑战是供体的缺乏 [ 19 ] ,提供充足、合适的供胰来源,是临床广泛开展 PIT 治疗 T1DM 的前提。现就 PIT 的供体细胞来源作一综述。

1. 同种(人类)来源胰岛细胞

1.1. 同种异体来源胰岛细胞

来自国际协同胰岛移植登记处(CITR)2014 年末的统计报告显示,脑死亡捐赠(donation after brain death,DBD)供胰(同种异体)目前仍是临床 PIT 的主要供体来源。近年来,心脏死亡捐赠(donation after cardiac death,DCD)供胰逐渐成为另一有效替代细胞来源。与 DBD 相比,DCD 器官通常会遭受更为严重的缺血再灌注损伤。DCD 供胰存在外分泌细胞缺血损伤致胰腺炎的风险,不适用于 PT,潜在扩大了供体胰岛来源。活体供胰 PIT 曾由日本京都大学于 2005 年首次报道 [ 20 - 21 ] ,1 例 27 岁女性 T1DM 患者接受了其母亲远端胰腺来源的胰岛细胞,术后短期及 1 年随访显示,供、受体均维持着良好的血糖控制状态。虽然活体供胰具有缓解供体缺乏、胰岛活性高(缺血损伤小)等优势;但供体面临手术干预,且存在手术致糖尿病及外科并发症等风险,目前较少应用。

多项研究表明 [ 5 , 11 , 14 ] ,输注至少 60 万胰岛当量(islet equivalents,IEQs)的移植物(平均 10 000 IEQs/kg),可使 75% ~ 80% 受者达到理想的胰岛素水平。成年人胰腺中大约含有 100 万个胰岛,目前分离纯化条件下仅有不足 50% 的胰岛细胞可获取 [ 11 , 14 , 22 ] ,故一般需要 2 ~ 4 个供胰以满足 1 个受体的移植需求。以美国为例,每年大约有 8 000 名器官捐赠者,仅有不到 30% 的胰腺器官被用于移植 [ 23 - 24 ] 。因此,供胰数量远不能达到 T1DM 患者的需求。此外,多供体来源的 PIT 也会增加受体对人类白细胞抗原致敏的风险几率。虽然已有成功进行临床“一对一”PIT 的报道 [ 25 - 26 ] ,但从多供体全面地过渡到单供体移植阶段,仍需要在诸多方面取得进展,比如合适供胰的选择,冷、热缺血及消化分离过程中胰岛的保护,稳定、高效、低毒的消化酶应用,优化的标准化制备流程,简便、可靠的移植物效能测评,强效的免疫诱导及促移植物定植策略等 [ 12 , 25 - 27 ] 。Al-Adra 等 [ 26 ] 近年研究表明,受者术前每日胰岛素用量<0.6 U/kg 与移植细胞数量>5 646 IEQs/kg,是预测单供体 PIT 后获得脱离胰岛素的两个独立影响因素。

为筛选出最佳的胰岛供体、减少捐献者的个体差异对细胞分离结果的影响,O’Gorman 等于 2005 年首次建立起胰岛供体评分系统 [ 28 - 29 ] 。该评分系统对多个供体特征变量进行了评估分析,如年龄、冷缺血时间、体质量指数(body mass index,BMI)、死亡原因、血管升压药应用、病史与既往史、住院时间、血糖水平等;当供体积分<60 时视为边缘性供体,>80 为优良供体。后续各大临床研究中心大多以胰岛供体评分系统为基础来进行 PIT 供体的筛选 [ 14 , 30 - 32 ] 。目前,单从供体自身体质特性而言,选择年轻(<45 岁)、高 BMI(>30 kg/m 2 )、血流动力学稳定且肝功能正常的捐赠者,可大大提高胰岛分离的产量及成功率 [ 25 - 26 , 33 - 35 ] 。当供体年龄每超过 1 岁,胰岛纯化前的产量平均会降低 64 IEQs/g(胰腺重量),相应的分离成功率会下降 1% [ 34 ] 。高体质量或 BMI 的捐赠者通常具有较大的胰腺,可积极地影响胰岛细胞产量,但这并不表示肥胖的捐赠者就是合适的胰腺供体。对于肥胖捐赠者,移植前应确保糖化血红蛋白处于正常范围内 [ 36 - 37 ] 。另有研究表明 [ 38 ] ,对于年龄>40 岁的捐赠者,体表面积可较准确地预估供者胰腺质量 [ 38 ] ,但后续缺乏利用此项指标来进行供胰筛选的深入研究。

既往统计研究表明 [ 35 ] ,DBD 供者较 DCD 供者能提供更高的胰岛产量;但 Markmann 等 [ 39 ] 、Andres 等 [ 40 ] 的研究均表明,DCD 与 DBD 来源的胰岛细胞具有相似的产量及生物活性。这可能与各研究中心制备分离技术存在差异有关。此外,Hilling 等 [ 34 ] 统计分析发现,在调整其他变量影响的情况下(如年龄、BMI 等),当 DBD 供胰占据较高比例时,胰岛分离产量及成功率通常会降低。产生这一现象的可能原因是:① 研究设计差异,既往研究可能未有效地校正其他变量因素的影响,从而对结果判定产生干扰;② 研究中心制备经验差异,DBD 供者目前是大多数临床研究中心进行胰岛移植物制备的主要来源,而只有经验丰富的中心才会尝试 DCD 供者作为替代,从而导致 DCD 供者产生较好分离结果的偏移。近来,由 NIH 发起成立的临床胰岛移植联盟(CITC)报道了全球第 1 个关于临床胰岛移植物筛选、制备、评价及质控流程的标准 [ 41 ] 。该协议由 CITC 下属的 8 个 PIT 中心基于多年合作经验而规范、优化制定,对今后其他来源的胰岛移植物的临床准入也具有重要指导意义。关于 DCD 胰岛细胞移植治疗 T1DM 的临床研究主要集中于美国与日本,总体处于小规模尝试阶段;植入胰岛后,受体均可获得良好的血糖控制,部分患者可达到稳定的脱离胰岛素状态 [ 39 , 42 - 44 ] 。现今,更多国家已逐渐接受 DCD 器官移植,并努力推动立法来实现其临床的合理应用。在我国,目前已制定出台了《中国心脏死亡捐献器官评估与应用专家共识》,此共识的达成,对推动、规范我国 DCD 器官捐赠、质量评估等具有极其重要的指导意义 [ 45 ]

1.2. 自体来源胰岛细胞

胰腺切除术后行自体胰岛移植(autologous islet transplantation,AIT),旨在保存胰岛素分泌功能及预防糖尿病的发生。胰腺切除术的主要适应证是伴顽固性疼痛的慢性胰腺炎、胰腺良性肿瘤及创伤等。AIT 具有改善患者生活质量、保存胰岛功能、术后无需免疫抑制治疗、可用于儿童与青少年患者治疗等优势 [ 46 - 49 ] 。来自明尼苏达大学 409 例(1977 年—2011 年,含 53 例儿童患者)行胰腺全切+AIT 的慢性胰腺炎患者统计资料显示 [ 48 ] :3 年后,30% 患者达到完全脱离胰岛素,33% 仅有部分胰岛功能并需胰岛素辅助;5 年生存率分别为 89%(成人)和 98%(儿童)。AIT 改善代谢的疗效常优于同种异体 PIT,但仍主要取决于植入胰岛的数量;为较长期地维持功能,至少需要移植>2 500 IEQs/kg 的胰岛;此外,低龄(5 ~ 12 岁)、性别及既往无或较少胰腺手术史也是影响 AIT 疗效的重要因素 [ 47 - 50 ] 。目前,如何从已受损或纤维化胰腺中分离出足量、高质量的胰岛细胞,是 AIT 所面临的一个重大挑战。

2. 异种来源胰岛细胞

异种 PIT 被认为是解决临床供胰缺乏的一种具有前景的替代策略。猪因具有以下诸多优点而被认为是最佳的异种胰岛供体,如胰岛素结构与人类相似、来源充足、易于基因改造、抗自身免疫破坏及较少的伦理问题等 [ 51 ] 。相对于性别、体质量等因素而言,年龄是影响猪胰岛产量、大小及功能更为重要的因素 [ 52 - 53 ] 。胎猪由于胰腺组织体积较小、分化未完全,仅能分离出少量的未成熟胰岛细胞,通常需要大量供体以提供充足的移植细胞,以及植入后较长时间(2 ~ 3 个月)以便细胞成熟而发挥降糖功效;这些均不利于临床前期研究与临床大规模应用,还会带来动物伦理问题 [ 51 , 54 ] 。通常,>24 月龄的成年猪被视为适宜的异种胰岛供体,因其可提供较为充足的具有完整形态、大尺寸(直径 150 ~ 200 μm)、结构良好的功能性胰岛细胞 [ 55 - 56 ] 。与成年猪胰岛相比,新生猪胰岛细胞簇(neonatal pig pancreatic cell clusters,NPCCs)具有更为独特的优势:良好的缺血/炎性损伤抗性、易于分离纯化、低 T 细胞反应性等 [ 57 ] 。NPCCs 有望成为异种胰岛另一更有前景的来源。有研究表明 [ 53 , 58 - 59 ] ,<5 日龄新生猪来源的 NPCCs 一般具有较好的活性与功能。目前,由新西兰 Living Cell Technology 公司研发的胶囊包被 NPCCs 产品“Diabecell”,已进入后期临床测试阶段,并阶段性地取得了良好疗效。

其次,为有效地降低猪-人移植中人畜共患病的感染几率,应尽量选择无特定病原体的猪群。国外的无特定病原体芝加哥小型猪、新西兰奥克兰岛猪及国内培育的封闭系五指山小型猪、“XENO-1”小型猪等,均是较为实用的异种供体 [ 52 ] 。随着基因工程技术的发展,以转基因猪作为异种胰岛供体显示出更为广阔的应用前景,可有效减少早期移植物丢失、保护植入胰岛免受免疫反应攻击并促进其长期定植 [ 60 - 61 ] 。同时,多基因改造目前尚未显示对胰岛功能本身具有不良影响 [ 62 - 63 ] 。随着 CRISPR/Cas9 等新型、高效基因编辑技术的出现,更大的异种 PIT 进展或将在转基因猪中取得。

尽管目前猪胰岛异种移植已逐渐接近临床应用,但仍存在一些问题:① 缺乏安全、有效的可实现胰岛长期功能性定植的免疫抑制措施。随着胶囊包被、共刺激通路阻断等技术的发展与完善,或可达到长期、稳定的移植物免疫保护。② 即刻经血液介导的炎性反应(instant blood-mediated inflammatory reaction,IBMIR)的产生仍是早期胰岛丢失或失去功能的主要原因。多基因修饰猪(敲除组织因子并过表达凝血调节因子) [ 64 - 65 ] 联合胰岛保形包被技术 [ 66 ] 或可有效地抑制 IBMIR 的发生。③ 如何更为经济地获取大量且高质量的功能性猪胰岛。应尽快确立简便、经济及标准化的猪胰岛移植物制备与鉴定标准。④ 生物安全性。存在猪内源性逆转录病毒(porcine endogenous retrovirus,PERV)感染人类的风险。虽然目前在已报道的猪-人 PIT 试验中,尚未发现 PERV 感染现象,但其风险性不容忽视。在开展猪 PIT 前,有必要对可能出现的微生物感染(如 PERV、猪巨细胞病毒及圆环病毒等)进行安全筛查与评估。将来利用更为成熟的基因编辑技术 [ 67 ] ,或可彻底消除生物安全风险。

此外,罗非鱼、牛、犬类及灵长类等也可作为异种 PIT 的供体来源,但目前未取得较佳的移植疗效。

3. 干细胞源性胰岛样细胞

为缓解死亡捐献供胰所面临的胰岛来源匮乏,研究者们已开始将注意力集中于从干细胞诱导产生功能性胰岛 β 细胞或内分泌细胞群。目前,有多种类型的干细胞,至少在体外,可分化为针对葡萄糖刺激产生胰岛素分泌反应的 β 样细胞,如胚胎干细胞(embryonic stem cells,ESCs) [ 68 ] 、诱导多能性干细胞(induced pluripotent stem cells,iPSCs) [ 69 ] 、MSCs [ 70 - 71 ] 、成体组织来源干细胞(肝干细胞、胰腺成体干细胞等) [ 72 ] 及直接重新编辑体细胞 [ 73 - 74 ] 等。其中,多能干细胞与重新编辑体细胞(即转分化)为研究关注较多的领域 [ 75 ]

ESCs 拥有发育的全能性。已有研究证实鼠源性与人源性 ESCs 可分化为产胰岛素细胞(insulin-producing cells,IPCs)。D’Amour 等 [ 68 ] 在体外模拟胰腺的发育,首次利用五步分化法诱导人 ESCs 经过一系列内胚层中间体分化为具有胰岛素、胰高血糖素等激素分泌能力的 IPCs;但分化细胞针对葡萄糖刺激的 C 肽释放量极其微弱。后续研究进一步表明 [ 76 ] ,ESCs 来源的 IPCs 在糖尿病小鼠体内可分化为成熟的功能性 β 细胞并能改善受体糖代谢。目前,一项由美国 Viacyte 生物技术公司开展的胶囊包被 ESCs 来源胰腺内胚层细胞(ViaCyte VC-01)移植治疗 T1DM 的前瞻性临床试验(Ⅰ/Ⅱ期,注册号: {"type":"clinical-trial","attrs":{"text":"NCT02239354","term_id":"NCT02239354"}} NCT02239354 )正在招募进行中。然而,ESCs 定向诱导分化 IPCs 策略仍存在特有问题:异体来源细胞的免疫排斥反应与伦理道德限制。iPSCs、MSCs 及成体组织干细胞则可来源于 T1DM 患者本身,几乎无移植后免疫排斥风险且不受伦理约束,是潜在的胰岛细胞来源。事实上,iPSCs 常被认为是自体来源的 ESCs。多个研究小组证实 [ 69 , 77 ] iPSCs 与 ESCs 均可通过相同的诱导方案分化成为 IPCs,且分化效能相似;体内实验亦表明植入 iPSCs 来源的 IPCs 可使糖尿病小鼠血糖恢复至正常水平 [ 78 - 79 ] 。需要说明的是,iPSCs 来源的细胞在自体内仍具有一定免疫原性 [ 80 ] ,其可能原因是由基因操作本身所致(如反转录病毒载体整合)。目前,借助于非整合载体、重复 mRNA 转染及转座子切除等基因编辑技术,可获得无载体/转基因的 iPSCs 细胞株,从而大大降低其在临床转化应用过程中存在的安全风险及免疫原性。

由 iPSCs 技术衍生出的另一种重要研究潮流,是将一种体细胞“直接重编程”为另一种终末分化体细胞,此转分化过程中无需经历干细胞中间状态。研究者们利用转录因子(transcription factor,TF)的组合来实现体细胞的直接转分化。通过转导入 TF 组合(Pdx1+Ngn3+Mafa)可成功使成体小鼠胰腺外分泌细胞 [ 81 ] 、肝细胞 [ 74 ] 及食蟹猴胆管上皮细胞 [ 82 ] 分别转分化为 IPCs。此外,转导入 Ngn3、Ngn3+Mafa 可分别使胰腺腺泡细胞(外分泌细胞)直接转分化为胰岛 δ 样、α 样细胞 [ 83 ] 。基于不同的 TF 组合,可诱导腺泡细胞直接转分化而形成较完整的胰岛细胞单元,为重建 T1DM 患者内源性胰岛素分泌调节系统及扩大移植细胞来源奠定了实验基础。此外,成体胰腺的导管组织中含有胰腺前体细胞,已证实具有多向分化潜能,在适宜的刺激诱导条件下可分化为 IPCs。基于此,传统胰岛制备过程中视为废弃物的组织细胞(如外分泌腺、导管组织等)似乎重新具备可利用价值 [ 84 ] ;有必要进一步改良目前的分离制备技术与流程,以提高胰腺组织的利用率。然而,直接重编辑技术临床应用前仍需解决一些难题:转分化效率、稳定性及靶细胞功能欠佳,合适 TF 的确认与选择,存在表观遗传记忆,及基因操作本身所来的免疫排斥风险。

MSCs 除拥有分化潜力大、增殖能力强等干细胞基本特征外,还具备免疫原性低、免疫调节及重建、易于取材分离、便于商业化制备等自身优势。已有较多研究证实 MSCs 体外可直接诱导分化为 IPCs,体内植入糖尿病动物后可维持其糖代谢于正常范围 [ 75 ] 。近年 Thakkar 等 [ 85 ] 与 Cai 等 [ 86 ] 研究表明,MSCs 来源 IPCs 或 MSCs+骨髓干细胞共输注可使 T1DM 患者达到良好的长期(1 年)血糖控制。而对于 2 型糖尿病(type 2 diabetes mellitus,T2DM)患者,MSCs 输注可显著改善患者的胰岛功能,部分患者可达到长期(>24 个月)的脱离胰岛素 [ 87 ] 。Pan 等 [ 88 ] 近期研究则显示,MSCs 在 T2DM 树鼩体内可直接分化为 IPCs 并发挥良好的降糖效果。以上研究均提示 MSCs 有望成为移植治疗糖尿病的细胞来源。然而,目前缺乏成熟的 MSCs 分化为功能性 β 细胞的诱导方案,且 MSCs 治疗糖尿病的机制尚不完全明确;仍需更多、更深入的实验及前期临床研究,为其安全、有效的临床应用奠定基础。

目前,干细胞来源 PIT 所面临的普遍性问题有 [ 89 ] :① 缺乏明确的干细胞表面标记,干细胞分离、鉴定困难;② 诱导/转分化成功率及效率较低;③ 获取的 IPCs 胰岛素分泌效能较弱,细胞增殖能力有限,难以大规模商业化生产,且体内植入后远期效果不稳定;④ 遗传错误、变异及成瘤风险,临床安全性有待更全面、深入的评估;⑤ 受体自身免疫系统对 IPCs 的破坏。因此,干细胞来源 PIT 治疗糖尿病离实际临床应用仍有较长距离,需要深入研究干细胞分化机制,优化并标准化干细胞制备方法,不断探索并改良诱导分化条件,规范移植方法与技术,优化免疫抑制策略(如联合免疫包被、共刺激通路阻断等技术)。

4. 胰岛细胞株

尽管胰岛 β 细胞具有一定生长能力,但目前尚无可行的体外扩增 β 细胞方法。建立可植入的“永生化”β 细胞系或可彻底解决胰岛来源匮乏的难题。目前,国内外研究者已成功建立基于胰岛素瘤衍生而来的多种属 β 细胞系,如 NIT-1(鼠源)、INS-1 (鼠源)、RIN-m5F(鼠源)、Beta-TC-6(鼠源)、EndoC-βH1(人源)、EndoC-βH2(人源) [ 90 - 94 ] ,是进行 β 细胞相关研究较为理想的替代品。这些细胞既有强大的增殖潜能,又具备正常 β 细胞的一些重要功能特征,如特异性表型分子表达、胰岛素产生与分泌、葡萄糖刺激反应性等,部分细胞系还具有较好的动物模型体内降糖作用。然而,胰岛细胞的结构与功能复杂,血糖水平受多种激素精确调控,现有细胞杂交融合或基因重组技术尚不能生产出近乎正常的胰岛 β 细胞。胰岛细胞株移植离大规模动物及临床前期试验仍有较长的距离。此领域的突破或将依赖于对细胞生长发育及基因工程等学科的深入研究。

5. 展望

近年来随着胰岛分离制备及移植技术的日趋成熟,临床 PIT 取得不少成就。然而,即使现有的捐赠供胰均能成功地进行“一对一”PIT,胰岛的数量仍远不能满足糖尿病患者的需求。因此,寻求异种及由分化或转分化而来的替代胰岛来源具有十分重要的意义。随着社会捐赠意识的普及与体系的完善,胰岛分离及保存、免疫耐受诱导、基因工程、干细胞制备与诱导分化等技术的发展,以及对胰岛发生、分化、凋亡等调控机制的深入了解,未来可供移植胰岛的来源将会大大丰富,有望推动细胞替代治疗成为 T1DM 治疗的标准方法之一。

志谢: 西安交通大学医学院靖宁女士对本文文字编辑做出的重要贡献

Funding Statement

国家自然科学基金资助项目(30700772)

National Natural Science Foundation of China (30700772)

References

1. Atkinson MA, Eisenbarth GS, Michels AW Type 1 diabetes. Lancet. 2014; 383 (9911):69–82. [ PMC free article ] [ PubMed ] [ Google Scholar ]
2. Diaz-Valencia PA, Bougnères P, Valleron AJ. Global epidemiology of type 1 diabetes in young adults and adults: a systematic review. BMC Public Health, 2015, 15: 255.
3. 迟家敏. 实用糖尿病学. 4版. 北京: 人民卫生出版社, 2015: 2-9.
4. Fotino N, Fotino C, Pileggi A Re-engineering islet cell transplantation. Pharmacol Res. 2015; 98 :76–85. [ PMC free article ] [ PubMed ] [ Google Scholar ]
5. Hering BJ, Clarke WR, Bridges ND, et al Phase 3 Trial of Transplantation of Human Islets in Type 1 Diabetes Complicated by Severe Hypoglycemia. Diabetes Care. 2016; 39 (7):1230–1240. [ PMC free article ] [ PubMed ] [ Google Scholar ]
6. Wisel SA, Braun HJ, Stock PG Current outcomes in islet versus solid organ pancreas transplant for beta-cell replacement in type 1 diabetes. Curr Opin Organ Transplant. 2016; 21 (4):399–404. [ PubMed ] [ Google Scholar ]
7. Nathan DM, Cleary PA, Backlund JY, et al Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005; 353 (25):2643–2653. [ PMC free article ] [ PubMed ] [ Google Scholar ]
8. Ludwig B, Ludwig S, Steffen A, et al Islet versus pancreas transplantation in type 1 diabetes: competitive or complementary? Curr Diab Rep. 2010; 10 (6):506–511. [ PubMed ] [ Google Scholar ]
9. Farney AC, Sutherland DE, Opara EC Evolution of Islet Transplantation for the Last 30 Years. Pancreas. 2016; 45 (1):8–20. [ PubMed ] [ Google Scholar ]
10. Bartlett ST, Markmann JF, Johnson P, et al Report from IPITA-TTS Opinion Leaders Meeting on the Future of beta-Cell Replacement. Transplantation. 2016; 100 (Suppl 2):S1–44. [ PMC free article ] [ PubMed ] [ Google Scholar ]
11. Shapiro AM, Lakey JR, Ryan EA, et al Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000; 343 (4):230–238. [ PubMed ] [ Google Scholar ]
12. Bellin MD, Barton FB, Heitman A, et al Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transplant. 2012; 12 (6):1576–1583. [ PMC free article ] [ PubMed ] [ Google Scholar ]
13. Lehmann R, Graziano J, Brockmann J, et al Glycemic Control in Simultaneous Islet-Kidney Versus Pancreas-Kidney Transplantation in Type 1 Diabetes: A Prospective 13-Year Follow-up. Diabetes Care. 2015; 38 (5):752–759. [ PubMed ] [ Google Scholar ]
14. Balamurugan AN, Naziruddin B, Lockridge A, et al Islet product characteristics and factors related to successful human islet transplantation from the Collaborative Islet Transplant Registry (CITR) 1999-2010. Am J Transplant. 2014; 14 (11):2595–2606. [ PMC free article ] [ PubMed ] [ Google Scholar ]
15. Moassesfar S, Masharani U, Frassetto LA, et al A Comparative Analysis of the Safety, Efficacy, and Cost of Islet Versus Pancreas Transplantation in Nonuremic Patients With Type 1 Diabetes. Am J Transplant. 2016; 16 (2):518–526. [ PMC free article ] [ PubMed ] [ Google Scholar ]
16. Lablanche S, Borot S, Wojtusciszyn A, et al Five-Year Metabolic, Functional, and Safety Results of Patients With Type 1 Diabetes Transplanted With Allogenic Islets Within the Swiss-French GRAGIL Network. Diabetes Care. 2015; 38 (9):1714–1722. [ PubMed ] [ Google Scholar ]
17. Kandaswamy R, Skeans MA, Gustafson SK, et al OPTN/SRTR 2013 Annual Data Report: pancreas. Am J Transplant. 2015; 15 (Suppl 2):1–20. [ PubMed ] [ Google Scholar ]
18. Brennan DC, Kopetskie HA, Sayre PH, et al Long-Term Follow-Up of the Edmonton Protocol of Islet Transplantation in the United States. Am J Transplant. 2016; 16 (2):509–517. [ PubMed ] [ Google Scholar ]
19. Markmann JF, Bartlett ST, Johnson P, et al Executive Summary of IPITA-TTS Opinion Leaders Report on the Future of beta-Cell Replacement. Transplantation. 2016; 100 (7):e25–31. [ PubMed ] [ Google Scholar ]
20. Matsumoto S, Okitsu T, Iwanaga Y, et al Insulin independence after living-donor distal pancreatectomy and islet allotransplantation. Lancet. 2005; 365 (9471):1642–1644. [ PubMed ] [ Google Scholar ]
21. Matsumoto S, Okitsu T, Iwanaga Y, et al Follow-up study of the first successful living donor islet transplantation. Transplantation. 2006; 82 (12):1629–1633. [ PubMed ] [ Google Scholar ]
22. Paget M, Murray H, Bailey CJ, et al Human islet isolation: semi-automated and manual methods. Diab Vasc Dis Res. 2007; 4 (1):7–12. [ PubMed ] [ Google Scholar ]
23. Israni AK, Zaun D, Rosendale JD, et al OPTN/SRTR 2012 Annual Data Report: deceased organ donation. Am J Transplant. 2014; 14 (Suppl 1):167–183. [ PubMed ] [ Google Scholar ]
24. Israni AK, Skeans MA, Gustafson SK, et al OPTN/SRTR 2012 Annual Data Report: pancreas. Am J Transplant. 2014; 14 (Suppl 1):45–68. [ PubMed ] [ Google Scholar ]
25. Hering BJ, Kandaswamy R, Ansite JD, et al Single-donor, marginal-dose islet transplantation in patients with type 1 diabetes. JAMA. 2005; 293 (7):830–835. [ PubMed ] [ Google Scholar ]
26. Al-Adra DP, Gill RS, Imes S, et al Single-donor islet transplantation and long-term insulin independence in select patients with type 1 diabetes mellitus. Transplantation. 2014; 98 (9):1007–1012. [ PubMed ] [ Google Scholar ]
27. Shapiro AM Strategies toward single-donor islets of Langerhans transplantation. Curr Opin Organ Transplant. 2011; 16 (6):627–631. [ PMC free article ] [ PubMed ] [ Google Scholar ]
28. O’Gorman D, Kin T, Murdoch T, et al The standardization of pancreatic donors for islet isolation. Transplant Proc. 2005; 37 (2):1309–1310. [ PubMed ] [ Google Scholar ]
29. Witkowski P, Liu Z, Cernea S, et al Validation of the scoring system for standardization of the pancreatic donor for islet isolation as used in a new islet isolation center. Transplant Proc. 2006; 38 (9):3039–3040. [ PubMed ] [ Google Scholar ]
30. Bruni A, Gala-Lopez B, Pepper AR, et al Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes. 2014; 7 :211–223. [ PMC free article ] [ PubMed ] [ Google Scholar ]
31. Ponte GM, Pileggi A, Messinger S, et al Toward maximizing the success rates of human islet isolation: influence of donor and isolation factors. Cell Transplant. 2007; 16 (6):595–607. [ PubMed ] [ Google Scholar ]
32. Wang LJ, Cochet O, Wang XJ, et al Donor height in combination with islet donor score improves pancreas donor selection for pancreatic islet isolation and transplantation. Transplant Proc. 2014; 46 (6):1972–1974. [ PMC free article ] [ PubMed ] [ Google Scholar ]
33. Niclauss N, Bosco D, Morel P, et al Influence of donor age on islet isolation and transplantation outcome. Transplantation. 2011; 91 (3):360–366. [ PubMed ] [ Google Scholar ]
34. Hilling DE, Bouwman E, Terpstra OT, et al Effects of donor-, pancreas-, and isolation-related variables on human islet isolation outcome: a systematic review. Cell Transplant. 2014; 23 (8):921–928. [ PubMed ] [ Google Scholar ]
35. Kaddis JS, Danobeitia JS, Niland JC, et al Multicenter analysis of novel and established variables associated with successful human islet isolation outcomes. Am J Transplant. 2010; 10 (3):646–656. [ PMC free article ] [ PubMed ] [ Google Scholar ]
36. Barton FB, Rickels MR, Alejandro R, et al Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care. 2012; 35 (7):1436–1445. [ PMC free article ] [ PubMed ] [ Google Scholar ]
37. Deng S, Vatamaniuk M, Huang X, et al Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes. 2004; 53 (3):624–632. [ PubMed ] [ Google Scholar ]
38. Kin T, Murdoch TB, Shapiro AM, et al Estimation of pancreas weight from donor variables. Cell Transplant. 2006; 15 (2):181–185. [ PubMed ] [ Google Scholar ]
39. Markmann JF, Deng S, Desai NM, et al The use of non-heart-beating donors for isolated pancreatic islet transplantation. Transplantation. 2003; 75 (9):1423–1429. [ PubMed ] [ Google Scholar ]
40. Andres A, Kin T, O’Gorman D, et al Clinical islet isolation and transplantation outcomes with deceased cardiac death donors are similar to neurological determination of death donors. Transpl Int. 2016; 29 (1):34–40. [ PubMed ] [ Google Scholar ]
41. Ricordi C, Goldstein JS, Balamurugan AN, et al National Institutes of Health-Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities. Diabetes. 2016; 65 (11):3418–3428. [ PMC free article ] [ PubMed ] [ Google Scholar ]
42. Anazawa T, Saito T, Goto M, et al Long-term outcomes of clinical transplantation of pancreatic islets with uncontrolled donors after cardiac death: a multicenter experience in Japan. Transplant Proc. 2014; 46 (6):1980–1984. [ PubMed ] [ Google Scholar ]
43. Berney T, Boffa C, Augustine T, et al Utilization of organs from donors after circulatory death for vascularized pancreas and islet of Langerhans transplantation: recommendations from an expert group. Transpl Int. 2016; 29 (7):798–806. [ PubMed ] [ Google Scholar ]
44. Saito T, Gotoh M, Satomi S, et al Islet transplantation using donors after cardiac death: report of the Japan Islet Transplantation Registry. Transplantation. 2010; 90 (7):740–747. [ PubMed ] [ Google Scholar ]
45. 郑树森 中国器官捐献与移植现状 武汉大学学报: 医学版 2016; 37 (4):523–525. [ Google Scholar ]
46. Wilson GC, Sutton JM, Smith MT, et al Total pancreatectomy with islet cell autotransplantation as the initial treatment for minimal-change chronic pancreatitis. HPB (Oxford) 2015; 17 (3):232–238. [ PMC free article ] [ PubMed ] [ Google Scholar ]
47. Chinnakotla S, Bellin MD, Schwarzenberg SJ, et al Total pancreatectomy and islet autotransplantation in children for chronic pancreatitis: indication, surgical techniques, postoperative management, and long-term outcomes. Ann Surg. 2014; 260 (1):56–64. [ PMC free article ] [ PubMed ] [ Google Scholar ]
48. Sutherland DE, Radosevich DM, Bellin MD, et al Total pancreatectomy and islet autotransplantation for chronic pancreatitis. J Am Coll Surg. 2012; 214 (4):409–426. [ PMC free article ] [ PubMed ] [ Google Scholar ]
49. Geyer MC, Coates PT, Khurana S, et al First Report of Successful Total Pancreatectomy and Islet Autotransplant in Australia. Pancreas. 2017; 46 (3):e18–e20. [ PubMed ] [ Google Scholar ]
50. Savari O, Golab K, Wang LJ, et al Preservation of beta cell function after pancreatic islet autotransplantation: University of Chicago experience. Am Surg. 2015; 81 (4):421–427. [ PubMed ] [ Google Scholar ]
51. Zhu HT, Yu L, Lyu Y, et al Optimal pig donor selection in islet xenotransplantation: current status and future perspectives. J Zhejiang Univ Sci B. 2014; 15 (8):681–691. [ PMC free article ] [ PubMed ] [ Google Scholar ]
52. Zhu H, Yu L, He Y, et al Microencapsulated Pig Islet Xenotransplantation as an Alternative Treatment of Diabetes. Tissue Eng Part B Rev. 2015; 21 (5):474–489. [ PubMed ] [ Google Scholar ]
53. Nagaraju S, Bottino R, Wijkstrom M, et al Islet xenotransplantation: what is the optimal age of the islet-source pig? Xenotransplantation. 2015; 22 (1):7–19. [ PubMed ] [ Google Scholar ]
54. 朱海涛, 于良, 王博 猪胰岛细胞分离纯化研究进展 中国修复重建外科杂志 2012; 26 (8):1012–1016. [ Google Scholar ]
55. Dufrane D, Goebbels RM, Fdilat I, et al Impact of porcine islet size on cellular structure and engraftment after transplantation: adult versus young pigs. Pancreas. 2005; 30 (2):138–147. [ PubMed ] [ Google Scholar ]
56. Bottino R, Balamurugan AN, Smetanka C, et al Isolation outcome and functional characteristics of young and adult pig pancreatic islets for transplantation studies. Xenotransplantation. 2007; 14 (1):74–82. [ PubMed ] [ Google Scholar ]
57. Rajotte RV Isolation and assessment of islet quality. Xenotransplantation. 2008; 15 (2):93–95. [ PubMed ] [ Google Scholar ]
58. Luca G, Nastruzzi C, Calvitti M, et al Accelerated functional maturation of isolated neonatal porcine cell clusters: in vitro and in vivo results in NOD mice . Cell Transplant. 2005; 14 (5):249–261. [ PubMed ] [ Google Scholar ]
59. Juang JH, Hsu BR, Kuo CH, et al Characteristics and transplantation of the porcine neonatal pancreatic cell clusters isolated from 1- to 3-day-old versus 1-month-old pigs. Transplant Proc. 2004; 36 (4):1203–1205. [ PubMed ] [ Google Scholar ]
60. Cooper DK, Ekser B, Ramsoondar J, et al The role of genetically engineered pigs in xenotransplantation research. J Pathol. 2016; 238 (2):288–299. [ PMC free article ] [ PubMed ] [ Google Scholar ]
61. Klymiuk N, Ludwig B, Seissler J, et al Current Concepts of Using Pigs as a Source for Beta-Cell Replacement Therapy of Type 1 Diabetes. Current Molecular Biology Reports. 2016; 2 (2):73–82. [ Google Scholar ]
62. Wijkstrom M, Bottino R, Iwase H, et al Glucose metabolism in pigs expressing human genes under an insulin promoter. Xenotransplantation. 2015; 22 (1):70–79. [ PMC free article ] [ PubMed ] [ Google Scholar ]
63. Salama A, Mosser M, Lévêque X, et al Neu5Gc and α1-3 GAL Xenoantigen Knockout Does Not Affect Glycemia Homeostasis and Insulin Secretion in Pigs. Diabetes. 2017; 66 (4):987–993. [ PubMed ] [ Google Scholar ]
64. Ma X, Ye B, Gao F, et al Tissue factor knockdown in porcine islets: an effective approach to suppressing the instant blood-mediated inflammatory reaction. Cell Transplant. 2012; 21 (1):61–71. [ PubMed ] [ Google Scholar ]
65. Hawthorne WJ, Salvaris EJ, Phillips P, et al Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. Am J Transplant. 2014; 14 (6):1300–1309. [ PMC free article ] [ PubMed ] [ Google Scholar ]
66. Jung YS, Jeong JH, Yook S, et al Surface modification of pancreatic islets using heparin-DOPA conjugate and anti-CD154 mAb for the prolonged survival of intrahepatic transplanted islets in a xenograft model. Biomaterials. 2012; 33 (1):295–303. [ PubMed ] [ Google Scholar ]
67. Salomon DR A CRISPR Way to Block PERVs-Engineering Organs for Transplantation. N Engl J Med. 2016; 374 (11):1089–1091. [ PubMed ] [ Google Scholar ]
68. D’Amour KA, Bang AG, Eliazer S, et al Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006; 24 (11):1392–1401. [ PubMed ] [ Google Scholar ]
69. Zhang D, Jiang W, Liu M, et al Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009; 19 (4):429–438. [ PubMed ] [ Google Scholar ]
70. Jafarian A, Taghikhani M, Abroun S, et al Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells. Mol Biol Rep. 2014; 41 (7):4783–4794. [ PubMed ] [ Google Scholar ]
71. 曹玫, 张剑波, 叶尚勉, 等 妊娠早期人脐带血管周围细胞的分离培养及定向分化胰岛样细胞的研究 中国修复重建外科杂志 2014; 28 (9):1156–1160. [ Google Scholar ]
72. Henley KD, Stanescu DE, Kropp PA, et al Threshold-Dependent Cooperativity of Pdx1 and Oc1 in Pancreatic Progenitors Establishes Competency for Endocrine Differentiation and beta-Cell Function. Cell Rep. 2016; 15 (12):2637–2650. [ PMC free article ] [ PubMed ] [ Google Scholar ]
73. Klein D, Alvarez-Cubela S, Lanzoni G, et al BMP-7 Induces Adult Human Pancreatic Exocrine-to-Endocrine Conversion. Diabetes. 2015; 64 (12):4123–4134. [ PMC free article ] [ PubMed ] [ Google Scholar ]
74. Banga A, Akinci E, Greder LV, et al In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts . Proc Natl Acad Sci U S A. 2012; 109 (38):15336–15341. [ PMC free article ] [ PubMed ] [ Google Scholar ]
75. Khosravi-Maharlooei M, Hajizadeh-Saffar E, Tahamtani Y, et al THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away. Eur J Endocrinol. 2015; 173 (5):R165–183. [ PubMed ] [ Google Scholar ]
76. Kroon E, Martinson LA, Kadoya K, et al Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo . Nat Biotechnol. 2008; 26 (4):443–452. [ PubMed ] [ Google Scholar ]
77. Pagliuca FW, Millman JR, Gurtler M, et al Generation of functional human pancreatic beta cells in vitro . Cell. 2014; 159 (2):428–439. [ PMC free article ] [ PubMed ] [ Google Scholar ]
78. Jeon K, Lim H, Kim JH, et al Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev. 2012; 21 (14):2642–2655. [ PMC free article ] [ PubMed ] [ Google Scholar ]
79. Alipio Z, Liao W, Roemer EJ, et al Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci U S A. 2010; 107 (30):13426–13431. [ PMC free article ] [ PubMed ] [ Google Scholar ]
80. Fu X The immunogenicity of cells derived from induced pluripotent stem cells. Cell Mol Immunol. 2014; 11 (1):14–16. [ PMC free article ] [ PubMed ] [ Google Scholar ]
81. Zhou Q, Brown J, Kanarek A, et al In vivo reprogramming of adult pancreatic exocrine cells to beta-cells . Nature. 2008; 455 (7213):627–632. [ PMC free article ] [ PubMed ] [ Google Scholar ]
82. Hill CM, Banga A, Abrahante JE, et al Establishing a large animal model for in vivo reprogramming of bile duct cells into insulin secreting cells to treat diabetes . Hum Gene Ther Clin Dev. 2017; 28 (2):87–95. [ PubMed ] [ Google Scholar ]
83. Li W, Nakanishi M, Zumsteg A, et al In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes . Elife. 2014; 3 :e01846. [ PMC free article ] [ PubMed ] [ Google Scholar ]
84. Lima MJ, Muir KR, Docherty HM, et al Generation of functional beta-like cells from human exocrine pancreas. PLoS One. 2016; 11 (5):e0156204. [ PMC free article ] [ PubMed ] [ Google Scholar ]
85. Thakkar UG, Trivedi HL, Vanikar AV, et al Insulin-secreting adipose-derived mesenchymal stromal cells with bone marrow-derived hematopoietic stem cells from autologous and allogenic sources for type 1 diabetes mellitus. Cytotherapy. 2015; 17 (7):940–947. [ PubMed ] [ Google Scholar ]
86. Cai J, Wu Z, Xu X, et al Umbilical Cord Mesenchymal Stromal Cell With Autologous Bone Marrow Cell Transplantation in Established Type 1 Diabetes: A Pilot Randomized Controlled Open-Label Clinical Study to Assess Safety and Impact on Insulin Secretion. Diabetes Care. 2016; 39 (1):149–157. [ PubMed ] [ Google Scholar ]
87. Guan LX, Guan H, Li HB, et al Therapeutic efficacy of umbilical cord-derived mesenchymal stem cells in patients with type 2 diabetes. Exp Ther Med. 2015; 9 (5):1623–1630. [ PMC free article ] [ PubMed ] [ Google Scholar ]
88. Pan XH, Huang X, Ruan GP, et al Umbilical cord mesenchymal stem cells are able to undergo differentiation into functional islet-like cells in type 2 diabetic tree shrews. Mol Cell Probes. 2017:1–12. [ PubMed ] [ Google Scholar ]
89. Abdelalim EM, Emara MM Advances and challenges in the differentiation of pluripotent stem cells into pancreatic beta cells. World J Stem Cells. 2015; 7 (1):174–181. [ PMC free article ] [ PubMed ] [ Google Scholar ]
90. Scharfmann R, Pechberty S, Hazhouz Y, et al Development of a conditionally immortalized human pancreatic beta cell line. J Clin Invest. 2014; 124 (5):2087–2098. [ PMC free article ] [ PubMed ] [ Google Scholar ]
91. Ravassard P, Hazhouz Y, Pechberty S, et al A genetically engineered human pancreatic beta cell line exhibiting glucose-inducible insulin secretion. J Clin Invest. 2011; 121 (9):3589–3597. [ PMC free article ] [ PubMed ] [ Google Scholar ]
92. McClenaghan NH, Flatt PR Physiological and pharmacological regulation of insulin release: insights offered through exploitation of insulin-secreting cell lines. Diabetes Obes Metab. 1999; 1 (3):137–150. [ PubMed ] [ Google Scholar ]
93. Hohmeier HE, Newgard CB Cell lines derived from pancreatic islets. Mol Cell Endocrinol. 2004; 228 (1-2):121–128. [ PubMed ] [ Google Scholar ]
94. 刘铮, 只德贤, 王敏伟 胰岛细胞系模型的研究进展 沈阳药科大学学报 2007; 24 (1):61–64. [ Google Scholar ]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University