作者简介:
李洪瑞 男,硕士研究生。主要研究方向:超临界二氧化碳在螺旋管中的换热和流动特性。Tel:023-65112469,E-mail:893703924@qq.com;
基金资助:
国家自然科学基金(51206197);中央高校基本科研业务费专项资金(CDJZR12140032);重庆市研究生科研创新项目(CYS16011)
摘要:
应用重正化群(RNG)
k-ε
湍流模型对超临界CO
2
流体在内径为9 mm,有效受热长度为5.5 m,节距为32 mm,绕径为283 mm的竖直螺旋管中的加热过程开展了数值模拟。研究了质量流速、进口压力、热通量以及不同流向对超临界CO
2
换热和压降的影响,并进一步分析变物性、浮升力和离心力在不同流动方向上对螺旋管中换热的耦合作用。结果表明:浮升力对超临界流体在螺旋管向上流动与向下流动的影响差别不大,而对水平流动的影响较大尤其是当流体在螺旋管的截面到入口截面的距离与管径之比为150~350之间(即临界温度附近)时,由于变物性、浮升力和离心力的耦合作用,导致水平流动方向上换热系数的震荡。
Abstract:
Numerical analysis on heat transfer of supercritical CO
2
in heated vertical helically coiled tubes is performed by renormalization group (RNG)
k
-
ε
turbulent model. The tube diameter, effective heated length, tube pitch, curvature diameter are 9 mm, 5.5 m, 32 mm and 283 mm, respectively. The influences of the mass flux, inlet pressure, heat flux and flow direction on heat transfer and pressure drop of supercritical CO
2
are studied. Furthermore, the combined effects of variable physical properties, buoyancy and centrifugal force in different flow directions of helically coiled tubes on heat transfer are analyzed. It is found that the influence of the buoyancy on the supercritical fluid flow up and down in helically coiled tubes is not significant, while the influence of the buoyancy in the horizontal direction is great, especially when the ratio of the distance which a cross-section of helically coiled tube to the entrance section and the pipe diameteris between 150 and 350 (near the critical temperature). The variable physical properties, the coupling effect of buoyancy and centrifugal force cause the fluctuation of the horizontal heat transfer coefficient.
Key words:
turbulent model,
numerical analysis,
supercritical fluids,
heat transfer,
buoyancy,
centrifugal force,
helically coiled tube
[1] 何慧珊. 优化方法在空调系统设计中的应用[J]. 航空学报, 1987, 8(10):488-495. HE H S. Application of the optimal method on air-conditioning system design[J]. Acta Aeronautica et Astronautica Sinica, 1987, 8(10):488-495(in Chinese).
[2] MA Y, LIU Z, TIAN H. A review of transcritical carbon dioxide heat pump and refrigeration cycles[J]. Energy,2013, 55:156-172.
[3] JIANG P X, ZHAO C R, SHI R F, et al. Experimental and numerical study of convection heat transfer of CO
2
at super-critical pressures during cooling in small vertical tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(21-22):4748-4756.
[4] 李蒙, 陈曦, 张华. 二氧化碳热泵热水器微通道气体冷却器的仿真分析[J]. 化工学报, 2008, 59(52):143-147. LI M, CHEN X, ZHANG H. Numerical simulation of micro-channel gas cooler for CO
2
heat pump heater[J]. CIESC Journal, 2008, 59(52):143-147(in Chinese).
[5] 饶政华, 廖胜明. 二氧化碳微通道气体冷却器的数值仿真与性能优化[J]. 化工学报, 2005, 56(9):1721-1726. RAO Z H, LIAO S M. Numerical simulation and performance optimization of carbon dioxide micro-channel gas cooler[J]. CIESC Journal, 2005, 56(9):1721-1726(in Chinese).
[6] LI D Q. Investigation of an ejector-expansion device in a transcritical carbon dioxide cycle for military ECU applications[D]. West Lafayette:Purdue University, 2006.
[7] 彦启森, 石文星, 田长青. 空气调节用制冷技术[M]. 北京:中国建筑工业出版社, 2010:36-39. YAN Q S, SHI W X, TIAN C Q. Air conditioning refrigeration technology[M]. Beijing:China Architecture and Building Press, 2010:36-39(in Chinese).
[8] LORENTZEN G. Revival of carbon dioxide as a refrigerant(Ⅰ)[J]. H &V Engineer, 1993, 66(721):9-14.
[9] LORENTZEN G. Revival of carbon dioxide as a refrigerant(Ⅱ)[J]. H &V Engineer, 1993, 66(722):10-12.
[10] JIANG P X, XU Y J, LV J. Experimental investigation of convection heat transfer of CO
2
at super-critical pressures in vertical mini tubes and in porous media[J]. Applied Thermal Engineering, 2004, 24(8-9):1255-1270.
[11] HE S, JIANG P X, XU Y J, et al. A computational study of convection heat transfer to CO
2
at supercritical pressures in a vertical minitube[J]. International Journal of Thermal Sciences, 2005, 44:521-530.
[12] LIAO S M, ZHAO T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer, 2002, 45(25):5025-5034.
[13] XU F, GUO L J. Mixed convective flow and heat transfer of water in a helicoidal pipe under supercritical pressure[J]. Journal of Xi'an Jiaotong Univercity, 2005, 39(9):978-981.
[14] LIBERTO D M, CIOFALO M. A study of turbulent heat transfer in curved pipes by numerical simulation[J]. International Journal of Heat and Mass Transfer, 2013, 59:112-125
[15] WANG K Z, XU X X, WU Y Y, et al. Numerical investigation on heat transfer of supercritical CO
2
in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99:112-120.
[16] XU J L, YANG C Y, ZHANG W, et al. Turbulent convective heat transfer of CO
2
in a helical tube at near-critical pressure[J]. International Journal of Heat and Mass Transfer, 2015, 80:748-758.
[17] 王淑香, 张伟, 牛志愿, 等. 超临界压力下CO
2
在螺旋管内的混合对流换热[J]. 化工学报, 2013, 64(11):3917-3926. WANG S X, ZHANG W, NIU Z Y, et al. Mixed convective heat transfer to supercritical carbon dioxide in helically coiled tube[J]. CIESC Journal, 2013, 64(11):3917-3926(in Chinese).
[18] 王福军. 计算流动力学分析--CFD软件原理与应用[M].北京:清华大学出版社, 2004:124-125. WANG F J. Computational flow dynamics analysis-Principle and application of CFD software[M]. Beijing:Tsinghua University Press, 2004:124-125(in Chinese).
[19] YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence:I. Basic theory[J]. SIAM Journal on Scientific Computing, 1986, 1(1):1-51.
[20] Fluent Inc. Fluent user's guide, Cecil Township, Pennsylvania[Z].[S.L.]:Ansys, Inc., 2006.
[21] NIST Standard Reference Database 23. NIST thermodynamic and transportproperties of refrigerants and refrigerant mixtures REFPROP. Version 8.0[S]. Maryland, USA:Gaithersburg, 2007.
[22] ZHANG W, WANG S X, LI C, et al. Mixed convective heat transfer of CO
2
at supercritical pressures flowing upward through a vertical helically coiled tube[J]. Applied Thermal Engineering,2015, 88:61-70.
冯振宇, 刘旭, 林岚辉, 杨永攀, 解江, 石霄鹏, 肖培, 李磊子, 易朋飞, 刘小川, 白春玉.
安全带对航空座椅及乘员冲击响应的影响
[J]. 航空学报, 2022, 43(1): 224808-224808.
谢晨月, 王建春, 万敏平, 陈十一.
基于人工神经网络的可压缩湍流大涡模拟模型
[J]. 航空学报, 2021, 42(9): 625723-625723.
陈江涛, 章超, 吴晓军, 赵炜.
考虑数值离散误差的湍流模型选择引入的不确定度量化
[J]. 航空学报, 2021, 42(9): 625741-625741.
吕元伟, 张靖周, 单勇, 孙文静.
冠齿喷管射流冲击半圆形靶面的对流换热
[J]. 航空学报, 2021, 42(7): 124762-124762.
叶林, 刘存良, 杨寓全, 黄蓉, 朱安冬.
V肋对尾缘劈缝气膜冷却特性的影响
[J]. 航空学报, 2021, 42(6): 124181-124181.
张云光, 李志强, 王耀奇, 李红, 李淑慧.
2060铝锂合金冷模热成形界面换热系数确定的实验与算法
[J]. 航空学报, 2021, 42(2): 423805-423805.
陈江涛, 赵娇, 章超, 刘深深, 张耀冰, 吴晓军.
数值模拟方法对NASA CRM模型阻力预测的影响
[J]. 航空学报, 2020, 41(4): 123383-123383.
张亦知, 程诚, 范钇彤, 李高华, 李伟鹏.
基于物理知识约束的数据驱动式湍流模型修正及槽道湍流计算验证
[J]. 航空学报, 2020, 41(3): 123282-123282.
李家齐, 阮波, 高效伟.
超临界正癸烷同轴剪切喷注热声振荡数值模拟
[J]. 航空学报, 2020, 41(11): 123708-123708.
丁水汀, 于航, 邱天, 单晓明, 贺宜红.
单孔容腔瞬态充气换热的理论分析方法
[J]. 航空学报, 2020, 41(1): 123221-123221.
李洪伟, 陈庆贵, 徐筱李, 洪杰.
共因失效相关同级叶片系统可靠性分析
[J]. 航空学报, 2019, 40(7): 222803-222803.