协程是一种用户态的轻量级线程,又称微线程。

协程拥有自己的寄存器上下文和栈,调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。

  • 无需线程上下文切换的开销
  • 无需原子操作锁定及同步的开销
  • 方便切换控制流,简化编程模型
  • 高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理。
  • 所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。

    原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序是不可以被打乱,或者切割掉只执行部分。视作整体是原子性的核心。

    缺点:

  • 无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
  • 进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序
  • gevent的sleep可以交出控制权,当我们在受限于网络或IO的函数中使用gevent,这些函数会被协作式的调度, gevent的真正能力会得到发挥。Gevent处理了所有的细节, 来保证你的网络库会在可能的时候,隐式交出greenlet上下文的执行权。

    import gevent
    def foo():
        print('running in foo')
        gevent.sleep(0)
        print('com back from bar in to foo')
    def bar():
        print('running in bar')
        gevent.sleep(0)
        print('com back from foo in to bar')
    # 创建线程并行执行程序
    gevent.joinall([
        gevent.spawn(foo),
        gevent.spawn(bar),
    
    running in foo
    running in bar
    com back from bar in to foo
    com back from foo in to bar
    import random
    import gevent
    def task(pid):
        gevent.sleep(random.randint(0, 2) * 0.001)
        print('Task %s done' % pid)
    def synchronous():
        for i in range(1, 10):
            task(i)
    def asynchronous():
        threads = [gevent.spawn(task, i) for i in range(10)]
        gevent.joinall(threads)
    print('Synchronous:')
    synchronous()
    print('Asynchronous:')
    asynchronous()
    
    Synchronous:
    Task 1 done
    Task 2 done
    Task 3 done
    Task 4 done
    Task 5 done
    Task 6 done
    Task 7 done
    Task 8 done
    Task 9 done
    Asynchronous:
    Task 1 done
    Task 4 done
    Task 5 done
    Task 9 done
    Task 6 done
    Task 0 done
    Task 2 done
    Task 3 done
    Task 7 done
    Task 8 done

    以子类的方法使用协程

    可以子类化Greenlet类,重载它的_run方法,类似多线程和多进程模块

    import gevent
    from gevent import Greenlet
    class Test(Greenlet):
        def __init__(self, message, n):
            Greenlet.__init__(self)
            self.message = message
            self.n = n
        def _run(self):
            print(self.message, 'start')
            gevent.sleep(self.n)
            print(self.message, 'end')
    tests = [
        Test("hello", 3),
        Test("world", 2),
    for test in tests:
        test.start()  # 启动
    for test in tests:
        test.join()  # 等待执行结束

    使用monkey patch修改系统标准库(自动切换协程)

    当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。

    由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。

    由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成

    import gevent
    import requests
    from gevent import monkey
    monkey.patch_socket()
    def task(url):
        r = requests.get(url)
        print('%s bytes received from %s' % (len(r.text), url))
    gevent.joinall([
        gevent.spawn(task, 'https://www.baidu.com/'),
        gevent.spawn(task, 'https://www.qq.com/'),
        gevent.spawn(task, 'https://www.jd.com/'),
    
    2443 bytes received from https://www.baidu.com/
    108315 bytes received from https://www.jd.com/
    231873 bytes received from https://www.qq.com/

    可以看出3个网络操作是并发执行的,而且结束顺序不同

    参考链接:http://hhkbp2.github.io/gevent-tutorial/