写作本文的背景是由于字节的暑期青训营中,某个项目要求编写一个简易的流处理引擎( flink ),开发语言不限,推荐 Java ,本着好奇心的驱使,我打算使用 Go 语言进行部分尝试。

既然是流处理引擎,那么首先需要有流式的数据源,一般而言, flink 会配合从 kafka 中获取数据流,先不考虑后续编写引擎的部分,本文将着重于 kafka 的部署,并且后半段将给出使用 Go 语言编写 kafka 生产者 消费者

如果你只是希望完成 kafka 的部署,而不想局限于 Go 语言,只需要着重阅读文章的前半部分,后文的 Go 语言操作部分可以给你提供一些思路,你只需要找寻适合语言如 Java kafka client 库去完成 生产者 消费者 的编写即可。

部署kafka

docker前置知识

下文的实践需要你拥有基本的docker操作能力,如果未曾掌握docker知识点,推荐阅读这两篇文章:

docker | jenkins 实现自动化部署项目,后端躺着把运维的钱挣了!(上)

docker | jenkins 自动化CI/CD,后端躺着把运维的钱挣了!(下)

docker-compose

编写docker-compose.yml,通过docker容器部署单节点kafka

version: '3'
services:
    zookeeper: 
        image: wurstmeister/zookeeper:3.4.6 
        volumes: 
            - ./zookeeper_data:/opt/zookeeper-3.4.6/data 
        container_name: zookeeper 
        ports: 
            - "10002:2181" 
            - "10003:2182" 
        restart: always
    kafka: 
        image: wurstmeister/kafka 
        container_name: kafka_01 
        depends_on: 
            - zookeeper 
        ports: 
            - "10004:9092" 
        volumes: 
            - ./kafka_log:/kafka 
        environment: 
            - KAFKA_BROKER_NO=0 
            - KAFKA_BROKER_ID=0 
            - KAFKA_LISTENERS=PLAINTEXT://kafka_01:9092                     # kafka tcp 侦听的ip
            - KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://服务器ip:10004        # kafka broker侦听的ip
            - KAFKA_INTER_BROKER_LISTENER_NAME=PLAINTEXT 
            - KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181 
            - KAFKA_HEAP_OPTS=-Xmx512M -Xms16M
        restart: always
    # kafka集群管理面板
    kafka_manager: 
        image: sheepkiller/kafka-manager 
        ports: 
            - "10005:9000" 
        environment: 
            - ZK_HOSTS=zookeeper:2181 
        depends_on: 
            - zookeeper 
            - kafka 
        restart: always
docker-compose up -d

docker ps命令查看容器是否启动成功

通过上述docker-compose.yml部署会运行三个容器,选择进入kafka容器

docker exec -it kafka容器id /bin/bash
# 进入kafka目录
cd /opt/kafka_2.13-2.8.1/

在容器内创建topictopic是kafka中数据管理的基本单位,或者说集合,每一个topic可以管理多个partition,编码操作时:你可以往对应kafka服务器ip+port+topic+partition去发送和读取数据。

bin/kafka-topics.sh --create --zookeeper 服务器ip:2181 --replication-factor 1 -partitions 1 --topic test

Go语言中连接kafka使用第三方库: github.com/Shopify/sarama

go get github.com/segmentio/kafka-go

sarama库的简易操作可以参照文档(消费者的编写文档中有坑):文档地址

如下使用kafka client库进行编码所涉及的API操作比较简单,流程上或许不够规范,请酌情参考。

producer

文档中生产者只发送了一条数据后就会关闭,这里我改成了每秒钟发送一次。

consumer

文档中消费者虽然开启了Go协程(类比于Java的线程)去读取kafka的数据,但是由于主程序执行顺序执行完毕后,子协程也会终止,导致子协程还没有读取成功/打印数据,整个程序就已经关闭运行了。

因此我做了一些改动,在子协程退出之前,保持主程序不会退出(使用Go语言的WaitGroup),如果简单粗暴在main函数末尾设置一个很长的程序sleep时间,也是可以实现打印输出的。

生产&消费

确保kafka容器正常运行,kafka服务器防火墙端口正常开放,运行消费者程序,运行生产者程序。这个生产者每秒向kafka发送一条测试数据:this is a test log,你也可以添加上程序运行时间进行测试。

事实上被客户端消费后的数据并没有马上从kafka删除,这里不多做介绍,各位自行了解~

本文讲解了使用docker-compose部署单节点kafka的流程,后续通过修改docker-compose.yml的内容也可以实现kafka集群的部署,并且,在较新版本的kafka中,集群的部署可以脱离zookeeper,但是经过了解,由于功能并不完善,这里还是选择了基于zookeeper的部署。

如果有任何意见请在评论区积极留言