对比学习+多智能体强化学习 相关工作总结
Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
AAAI 2023
different agents can infer the same consensus in discrete space
Contrastive Identity-Aware Learning for Multi-Agent Value Decomposition
AAAI 2023
leverages contrastive learning to maximize the mutual information between the temporal credits and identity representations of different agents
论文代码相比pymarl的QMIX,只有两处改动:(代码风格不错,而且有注释,赞一个)
arange([start,] stop[, step,], dtype=None) 用于生成等差数列
Learning to Ground Decentralized Multi-Agent Communication with Contrastive Learning
arxiv挂出来的文章,应该还不是最终版
consider the communicative messages sent between agents as different incomplete views of the environment state.
下面这篇笔记分类汇总了我在知乎上分享过的有价值的资料,主要是关于多智能体(深度)强化学习的内容。
编辑于 2023-04-27 17:39
・IP 属地北京