鲍艳, 赵海航, 高璐, 等. 静电纺丝阻燃纳米纤维的研究进展[J]. 复合材料学报, 2024, 41(6): 2801-2814. doi: 10.13801/j.cnki.fhclxb.20231127.002
引用本文:
鲍艳, 赵海航, 高璐, 等. 静电纺丝阻燃纳米纤维的研究进展[J]. 复合材料学报, 2024, 41(6): 2801-2814.
doi:
10.13801/j.cnki.fhclxb.20231127.002
BAO Yan, ZHAO Haihang, GAO Lu, et al. Research progress of electrospinning flame retardant nanofiber[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2801-2814. doi: 10.13801/j.cnki.fhclxb.20231127.002
Citation:
BAO Yan, ZHAO Haihang, GAO Lu, et al. Research progress of electrospinning flame retardant nanofiber[J].
Acta Materiae Compositae Sinica
, 2024, 41(6): 2801-2814.
doi:
10.13801/j.cnki.fhclxb.20231127.002
鲍艳, 赵海航, 高璐, 等. 静电纺丝阻燃纳米纤维的研究进展[J]. 复合材料学报, 2024, 41(6): 2801-2814. doi: 10.13801/j.cnki.fhclxb.20231127.002
引用本文:
鲍艳, 赵海航, 高璐, 等. 静电纺丝阻燃纳米纤维的研究进展[J]. 复合材料学报, 2024, 41(6): 2801-2814.
doi:
10.13801/j.cnki.fhclxb.20231127.002
BAO Yan, ZHAO Haihang, GAO Lu, et al. Research progress of electrospinning flame retardant nanofiber[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2801-2814. doi: 10.13801/j.cnki.fhclxb.20231127.002
Citation:
BAO Yan, ZHAO Haihang, GAO Lu, et al. Research progress of electrospinning flame retardant nanofiber[J].
Acta Materiae Compositae Sinica
, 2024, 41(6): 2801-2814.
doi:
10.13801/j.cnki.fhclxb.20231127.002
静电纺丝纳米纤维具有可调控的纤维直径和分布、相互连通的孔结构、高孔隙率、高比表面积、可控纤维堆积密度等优点,成为近年来研究的热点。阻燃性是高分子材料的重要特性,阻燃纤维相较普通纤维具有使用安全性高的特点,研发具有阻燃特性的纳米纤维具有重要意义。静电纺丝技术提供了将纳米颗粒结合到聚合物溶液中并获得具有多种功能复合纤维材料的可能性。基于此,本文综述了采用静电纺丝技术制备阻燃纳米纤维的研究进展,特别是对静电纺丝阻燃纳米纤维的结构进行了分类,主要包括共混结构、核-壳结构、并列结构和多孔结构,并总结了不同结构阻燃纳米纤维的优缺点。然后对静电纺丝阻燃纳米纤维在锂离子电池隔膜、空气过滤、火灾报警传感、防护材料等领域的应用进行了归纳,最后对静电纺丝阻燃纳米纤维未来的发展方向进行了展望。
静电纺丝 /
阻燃 /
纳米纤维 /
结构 /
Abstract:
Electrospinning nanofiber exhibits several advantages, such as adjustable fiber diameter and distribution, interconnected pore structure, high porosity, high specific surface area, and controllable fiber packing density, which is a prominent research hot spot in recent years. Flame-retardant is an important characteristic of polymer materials, and flame-retardant fibers have the characteristic of higher safety in use compared to ordinary fibers. The development of nanofibers with flame-retardant properties is of great significance. Electrospinning technology refers to the jet spinning of polymer solutions or melts under strong electric fields, providing technical support for constructing nanofibers with special functions. It not only provides the possibility of combining functional fillers into polymers, but also provides the possibility of uniform dispersion of functional fillers within the polymer, which helps to more conveniently produce nanocomposites with special properties in situ. Based on this, this review introduced the development of flame-retardant nanofibers via electrospinning technology. Specially, the structure of electrospinning flame-retardant nanofibers was discussed, mainly including blend structure, core-shell structure, side-by-side structure, and porous structure. Their advantages and disadvantages were also emphasized. Moreover, the application status of flame-retardant nanofibers in lithium-ion battery separators, air filtration systems, fire alarm sensors, and protective materials were introduced. Finally, the future development directions of electrospinning flame-retardant nanofibers were foreseen.
Key words:
electrospinning /
flame retardant /
nanofiber /
structure /
application
(a) Schematic diagram of parallel two-component electrospinning equipment
[
32
]
; (b) Forming process of the polylactic acid nano-crystalline sandwich fiber
[
34
-
35
]
PVDF—Poly(vinylidene fluoride); PI—Polyimide; PLLA—Poly(L-lactic acid); PDLA—Poly(D-lactic acid); scPLA—Stereoscopic composite polylactic acid
(a) Preparation process of hydrogen-bonded cellulose/PI-COOH composite separator; (b) Flame retardancy of polypropylene (PP), PI andcellulose/PI-COOH separator
[
15
]
BPDA—4, 4'-biphthalic anhydride; ODA—4, 4'-diiminodiphenylether; DMF—N, N-dimethylformamide; PAA—Poly(amic acid); PP—Polypropylene
(a) Schematic diagram of poly(aryl ether benzimidazole) (OPBI) synthesis process and electrospinning preparation; (b) Flame retardancy test of PP and OPBI separator
[
48
]
DAB—3, 3′-diaminobenzidine; OBBA—4, 4′-oxybisbenzonic acid
Schematic of preparation of PAN/PVP/SnO
2
nanofiber membrane (a) and flame retardancy of original PAN (b) and nanofiber membrane (c)
[
57
]
PMs—Particulate matters
Optimize flame retardant performance through synergistic regulation among components
The compatibility between flame retardants and polymers is generally poor.
[
40
]
PEEK-PI
[
41
]
PVDF-PVP
[
42
]
PAN/PU
[
43
]
Core-shell
PI/PVDF-HFP
There is no need to consider the compatibility of the spinning solution, and the introduction of flame retardants is greater.
The miscibility of the solution greatly affects the electrospinning process.
[
28
]
TPP@PVDF-HFP
[
29
]
[
44
]
Gelatin-gum arabic
[
45
]
CA/Gel-Eg
[
46
]
Side-by-side
PI/PVDF-HFP
Composite fibers can fully utilize the advantages of both components and achieve synergistic flame retardant effects.
Difficulty in practical operation
[
33
]
PVDF/PI
[
32
]
Porous
NiO/CB/PLA
It can significantly improve the reflection effect of thermal radiation, reduce convective heat transfer, and enhance the flame retardant performance of the material.
May cause shrinkage and fracture of nanofibers
[
38
]
SiO
2
-TiO
2
[
37
]
HPCTP-PAN
[
39
]
Notes: PEN—Polyarylene ether nitriles; PCDA—10, 12-pentacosadiynoic acid; PEEK—Poly(ether-ether-ketone); PVP—Polyvinylpyrrolidone; PU—Polyurethane; PVDF-HFP—Poly(vinylidene fluoride)-co-hexafluoropropylene; TPP—Triphenyl phosphate; CA—Acetate; Gel—Gelatin; Eg—Eugenol; CB—Carbon black; PLA—Polylactic acid;
T
max
—Maximum pyrolysis temperature.
Notes:PS—Polystyrene; PCM—Phase change materials; TEP—Triethyl phosphate; OPAN—Oxidized polyacrylonitrile; PU—Polyurethane; PSA—Polysulfonamidefibre; IL—Ionic liquid; CoPA—Copolyamides; A-CNTs—Amino-functionalizedcarbon nanotube; SMPU—Shape memory thermoplastic polyurethane; PMIA—Poly(m-phenylene isophtalamide).
地址: 北京海淀区学院路37号
电话: 010-82316907, 82315973
Email:
fhclxb@buaa.edu.cn
北京仁和汇智信息技术有限公司