1.
Perry L, Malkin R. Effectiveness of medical equipment donations to improve health systems: how much medical equipment is broken in the developing world?. Med Biol Eng Comput, 2011, 49(7): 719-722.
2.
种银保. 临床工程师规范化培训教程. 北京: 科学出版社, 2017: 24-27.
3.
Webber C M, Martínez-Gálvez G, Higuita M L, et al Developing strategies for sustainable medical equipment maintenance in under-resourced settings.
Ann Glob Health.
2020;
86
(1):39. doi: 10.5334/aogh.2584.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
周东华, 胡艳艳 动态系统的故障诊断技术
自动化学报
2009;
35
(6):748–758.
[
Google Scholar
]
5.
潘海洋, 郑近德, 杨宇, 等 基于 CELCD 和 MFVPMCD 的智能故障诊断方法研究
电子学报
2017;
45
(3):546–551.
[
Google Scholar
]
6.
Deng L, Yu D Deep learning: methods and applications.
Foundations & Trends in Signal Processing.
2014;
7
(3):197–387.
[
Google Scholar
]
7.
陈伟宏, 安吉尧, 李仁发, 等 深度学习认知计算综述
自动化学报
2017;
43
(11):1886–1897.
[
Google Scholar
]
8.
Schmidhuber J. Deep learning in neural networks. Amsterdam: Elsevier Science Ltd, 2015.
9.
周念成, 廖建权, 王强钢, 等 深度学习在智能电网中的应用现状分析与展望
电力系统自动化
2019;
43
(4):180–191.
[
Google Scholar
]
10.
上官伟, 孟月月, 杨嘉明, 等 基于 LSTM-BP 级联网络的列控车载设备故障诊断
北京交通大学学报
2019;
43
(1):54–62.
[
PubMed
]
[
Google Scholar
]
11.
Huang Y Q The research on aero-engine gas path fault diagnosis by genetic algorithm-BP neural network.
Machine Tool & Hydraulics.
2015;
43
(18):31–36.
[
Google Scholar
]
12.
Guo X, Chen L, Shen C Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis.
Measurement.
2016;
93
(7):490–502.
[
Google Scholar
]
13.
Felix A G, Schmidhuber J, Cummins F Learning to forget: continual prediction with LSTM.
Neural Comput.
2000;
12
(10):2451–2471. doi: 10.1162/089976600300015015.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
Wang Weifeng, Qiu Xuehuan, Chen Caisen, et al. Application research on long short-term memory network in fault diagnosis//2018 International Conference on Machine Learning and Cybernetics (ICMLC), Chengdu: IEEE, 2018: 360-365.
15.
王维锋, 邱雪欢, 孙剑桥, 等 基于双层长短时记忆网络的齿轮故障诊断方法
装甲兵工程学院学报
2018;
32
(2):81–85.
[
Google Scholar
]
16.
de Bruin T, Verbert K, Babuska R Railway track circuit fault diagnosis using recurrent neural networks.
IEEE Trans Neural Netw Learn Syst.
2017;
28
(3):523–533. doi: 10.1109/TNNLS.2016.2551940.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
刘香君, 种银保, 肖晶晶, 等 基于数据驱动的设备电路板无图纸故障诊断
中国医学物理学杂志
2020;
37
(8):1047–1052.
[
Google Scholar
]
18.
Ma Yixuan, Zhang Zhenji Travel mode choice prediction using deep neural networks with entity embeddings.
IEEE Access.
2020;
8
:64959–64970. doi: 10.1109/ACCESS.2020.2985542.
[
CrossRef
]
[
Google Scholar
]
19.
宋勇, 蔡志平 大数据环境下基于信息论的入侵检测数据归一化方法
武汉大学学报: 理学版
2018;
64
(2):121–126.
[
Google Scholar
]
20.
Wang Xi, Li Qiang, Xie Zhihong New Feature Selection Method Based on SVM-RFE.
Advanced Materials Research.
2014;
926-930
:3100–3104. doi: 10.4028/www.scientific.net/AMR.926-930.3100.
[
CrossRef
]
[
Google Scholar
]
21.
Graves A Supervised Sequence Labelling with Recurrent Neural Networks.
Berlin, Heidelberg: Springer.
2012
[
Google Scholar
]
22.
杨丽, 吴雨茜, 王俊丽, 等 循环神经网络研究综述
计算机应用
2018;
38
(s2):1–6, 26.
[
Google Scholar
]
23.
Krizhevsky A, Sutskever I, Hinton G E ImageNet classification with deep convolutional neural networks.
International Conference on Neural Information Processing Systems.
2012;
1
:1097–1105.
[
Google Scholar
]
24.
Torfi A, Iranmanesh S M, Nasrabadi N, et al 3D convolutional neural networks for cross audio-visual matching recognition.
IEEE Access.
2017;
5
:22081–22091. doi: 10.1109/ACCESS.2017.2761539.
[
CrossRef
]
[
Google Scholar
]
25.
Li W, Meng Y. Improving the performance of neural networks with random forest in detecting network intrusions//The 10th International Symposium on Neural Networks (ISNN), 2013, 7952: 622-629.
26.
叶靖雯, 吴晓峰 端到端深度图像分割网络中抑制无效率学习的目标损失函数设计
微电子学与计算机
2019;
36
(9):38–43.
[
Google Scholar
]
27.
Hasnain M, Pasha M F, Ghani I, et al Evaluating trust prediction and confusion matrix measures for web services ranking.
IEEE Access.
2020;
8
:90847–90861. doi: 10.1109/ACCESS.2020.2994222.
[
CrossRef
]
[
Google Scholar
]
28.
Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks//30th International Conference on Machine Learning (ICML'13), Atlanta: International Machine Learning Society (IMLS), 2013, 28(3): 1310-1318.
29.
Yao Yuan, Rosasco L, Caponnetto A On early stopping in gradient descent learning.
Constr Approx.
2007;
26
(2):289–315. doi: 10.1007/s00365-006-0663-2.
[
CrossRef
]
[
Google Scholar
]