The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Nan Fang Yi Ke Da Xue Xue Bao. 2017 Jun 20; 37(6): 802–806.
PMCID: PMC6744155

Language: Chinese | English

不同pH条件下高低致龋性变异链球菌sRNA SpR19及其潜在靶标GroEL的表达变化

Changes in expressions of sRNA SpR19 and its potential target GroEL in Streptococcus mutans strains with different cariogenicity cultured under different pH conditions

胡 桐楠

解放军总医院口腔科,北京 100853, Department of Stomatology, General Hospital of PLA, Beijing 100853, China

Find articles by 胡 桐楠

郑 伟

军事医学科学院基础医学研究所,北京 100850, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China

Find articles by 郑 伟

李 少华

军事医学科学院基础医学研究所,北京 100850, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China

Find articles by 李 少华

董 洁

军事医学科学院基础医学研究所,北京 100850, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China

Find articles by 董 洁

王 心玲

解放军总后勤部第一门诊部口腔中心,北京 100842, Center of Stomatology, First Out-patient Clinics, Department of General Logistics of PLA, Beijing 100842, China

Find articles by 王 心玲

王 成龙

解放军总医院口腔科,北京 100853, Department of Stomatology, General Hospital of PLA, Beijing 100853, China

Find articles by 王 成龙

邵 宁生

军事医学科学院基础医学研究所,北京 100850, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China

Find articles by 邵 宁生

储 冰峰

解放军总医院口腔科,北京 100853, Department of Stomatology, General Hospital of PLA, Beijing 100853, China 解放军总医院口腔科,北京 100853, Department of Stomatology, General Hospital of PLA, Beijing 100853, China 军事医学科学院基础医学研究所,北京 100850, Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China 解放军总后勤部第一门诊部口腔中心,北京 100842, Center of Stomatology, First Out-patient Clinics, Department of General Logistics of PLA, Beijing 100842, China * P < 0.05; ** P < 0.05.

2.3. Western blot实验鉴定高、低致龋菌中GroEL的蛋白表达水平及其在酸性培养条件下的表达变化

因为没有商品化变异链球菌内参蛋白抗体,准确定量后,取相同量蛋白电泳并转膜,丽春红染色后进行抗体免疫印记。结果显示,GroEL在不同致龋能力的临床分离株中存在明显的表达差异,且在与致龋密切相关的酸性培养条件(pH5.5)下高致龋性变异链球菌中GroEL表达呈明显优势( P < 0.05, 图 2 )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-37-6-802-2.jpg

不同pH培养条件下高低致龋变异链球菌中GroEL蛋白表达水平

GroEL protein expression level of different cariogenic Streptococcus mutans strains under different pH culture condition.

2.4. qRT-PCR验证在pH5.5及pH7情况下高、低致龋性变异链球菌GroEL mRNA的表达水平

提取不同培养条件下的高、低致龋变异链球菌的细菌总RNA,随机引物反转录后荧光定量PCR检测目的基因的mRNA表达水平变化。结果显示,无论是正常(pH7)培养条件下还是在与致龋密切相关的酸性培养条件(pH5.5)下,高致龋性变异链球菌中GroEL mRNA均高表达( P < 0.05),与蛋白表达趋势一致( 图 3 )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-37-6-802-3.jpg

不同pH培养条件下高低致龋性变异链球菌中GroEL mRNA表达水平

GroEL mRNA expression in Streptococcus mutans strains with different cariogenicities under different pH condition detected by qRT-PCR. * P < 0.05, ** P < 0.05

3. 讨论

酸性环境可以直接导致牙釉质脱钙并诱发龋齿。变异链球菌的致龋性主要取决于其耐酸性。目前大部分研究关注在酸性环境下变异链球菌的生存机理。研究已证实多个与耐酸性相关的热休克蛋白家族基因 htrA dnaK groEL ,起到关键作用 [ 6 - 7 ] 。这些耐酸基因的调控机制,尤其是蛋白-蛋白以及sRNAs在转录后的基因表达过程中起到的调控作用也逐步得以解析 [ 8 , 19 ] 。Liu等 [ 8 ] 首次通过构建酸性条件下变异链球菌(18~50 nt)sRNAs文库、高通量测序分析及生物信息学分析得到 srn884837 srn133480 及其靶向的5种匹配的基因,证实其对靶基因的调控影响变异链球菌的耐酸特性。但对于变异链球菌致病相关的关键蛋白及其酸性环境中的调控机制尚需要更多的数据。本研究从致龋力不同的变异链球菌的sRNA高通量测序比较分析数据入手,针对变异链球菌耐酸相关的蛋白GroEL,利用生物信息学手段,筛选出一条可能靶向GroEL的sRNA SpR19。本研究进一步检测了上述分子的表达水平及其在酸性条件下的表达变化,为获得区分变异链球菌致龋能力的分子标志物及致龋相关分子的sRNA调控机制提供数据支持。

高龋患者与无龋健康变异链球菌临床分离株蛋白表达谱提示二者在60 000左右蛋白表达量上存在差异 [ 20 ] ;GroEL又称CH60或60 000伴侣分子,由含有高度保守性的 groES groEL 两个相距111 bp的基因构成,由 groE 操纵子表达,是属于热休克蛋白(HSP)60家族的一种可溶性蛋白,相对分子质量为60 000左右,它可捕捉并重折叠50 000~60 000非自身底物蛋白,防止其与其它非自身蛋白相互聚集、辅助新合成的及变性的蛋白折叠、组装、转运及降解,从而增强其酸适应性 [ 7 , 21 ] 。本研究通过制备GroEL的抗体和免疫印迹,进一步验证了GroEL在高致龋性变异链球菌中的高表达,与上述报道一致。另外,高致龋变异链球菌临床分离株中GroEL蛋白在酸性培养条件下无明显下降,而在低致龋变异链球菌中降低明显,也支持了GroEL蛋白在耐酸与致龋方面的重要作用。

但GroEL蛋白的调控机制,尤其是与致龋相关的sRNA调控机制并未见报道。我们进一步通过高、低致龋菌株的差异sRNA高通量测序数据,结合生物信息学手段,筛选出一条可能靶向GroEL的sRNA SpR19。细菌sRNA根据作用机制的不同主要可以分为3类:第1类sRNA称为核糖体开关,常位于mRNA前导序列5'-UTR区,随着结构改变调节下游基因表达 [ 22 ] ;第2类sRNA主要通过与靶核苷酸碱基特异性配对或与伴侣蛋白结合来发挥调节作用,如大肠杆菌中发现的大部分sRNA都与伴侣分子Hfq结合 [ 23 ] ;第3类为成簇规律性间隔的重复短回文序列CRISPRs,是基因组上的短回文序列串联排列重复规律间隔,目前认为可以在DNA的复制环节干扰噬菌体或质粒 [ 24 ]

细菌中最为普遍存在的是第2类sRNA,也是研究最广泛的一类。在细菌中以trans-sRNA作用为主 [ 23 ] ,通常由基因间隔区转录产生,在基因组中存在多个结合靶点。处于基因间隔区的sRNA SpR19可能是上述第2类调控机制的sRNA。生物信息学分析发现在GroEL的基因编码区及上下游调控区(基因间区)均存在多组高度匹配的SpR19的种子区。随后的数据证实,二者在酸性环境下的表达在高低致龋菌中存在负相关。由于缺乏针对变异链球菌有效的转染技术手段,本研究没有进一步的SpR19直接靶向GroEL的实验。下一步,我们将利用体外实验相关技术手段,包括构建荧光报告系统,提供SpR19直接靶向GroEL的实验数据支持。另外,我们的结果证实,在模拟致龋的耐酸环境下,GroEL与sRNA SpR19在高低致龋变异链球菌临床分离株中的明显表达差异,提示这一对分子可以作为分子标志物用于区分变异链球菌致龋能力。本研究目前正在搜集临床变异链球菌分离株,生化分析其高低致龋性,并与该一对潜在靶向的分子标志物鉴定结果比较,从而为临床变异链球菌致龋能力的鉴定提供更加便捷、细致的分子诊断手段。综上,本文从致龋高低不同菌株入手,结合高通量测序与耐酸关键蛋白,筛选到了与致龋、耐酸相关的一对具有潜在调控作用的分子标志物。

Biography

胡桐楠,在读硕士研究生,E-mail: moc.qq@687255093

Funding Statement

军队十二五面上项目(CWS12J126)

References

1. Smith EG, Spatafora GA. Gene regulation in S . mutans : complex control in a complex environment. J Dent Res. 2012; 91 (2):133–41. doi: 10.1177/0022034511415415.
[Smith EG, Spatafora GA. Gene regulation in S . mutans : complex control in a complex environment[J]. J Dent Res, 2012, 91(2): 133-41.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Liu CC, Niu YL, Zhou XE, et al. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism. Sci Rep. 2015; 5 :12929. doi: 10.1038/srep12929.
[Liu CC, Niu YL, Zhou XE, et al. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism[J]. Sci Rep, 2015, 5: 12929.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. Matsui R, Cvitkovitch D. Acid tolerance mechanisms utilized by Streptococcus mutans . Future Microbiol. 2010; 5 (3):403–17. doi: 10.2217/fmb.09.129.
[Matsui R, Cvitkovitch D. Acid tolerance mechanisms utilized by Streptococcus mutans [J]. Future Microbiol, 2010, 5 (3): 403-17.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. Jiang S, Chen S, Zhang C, et al. Effect of the biofilm age and starvation on acid tolerance of biofilm formed by Streptococcus mutans isolated from Caries-active and caries-free adults. Int J Mol Sci. 2017; 18 (4):pii: E713. doi: 10.3390/ijms18040713.
[Jiang S, Chen S, Zhang C, et al. Effect of the biofilm age and starvation on acid tolerance of biofilm formed by Streptococcus mutans isolated from Caries-active and caries-free adults[J]. Int J Mol Sci, 2017, 18 (4): pii: E713..] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. Xia L, Xia W, Li SH, et al. Identification and expression of small Non-coding RNA, L10-Leader, in different growth phases of Streptococcus mutans . https://www.ncbi.nlm.nih.gov/pubmed/?term=Identification+and+expression+of+small+non-coding+RNA%2C+L10-Leader%2C+in+different+growth+phases+of+Streptococcus+mutans . Nucleic Acid Ther. 2012; 22 (3):177–86.
[Xia L, Xia W, Li SH, et al. Identification and expression of small Non-coding RNA, L10-Leader, in different growth phases of Streptococcus mutans [J]. Nucleic Acid Ther, 2012, 22 (3): 177-86.] [ PubMed ] [ Google Scholar ]
6. Moye ZD, Zeng L, Burne RA. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans . J Oral Microbiol. 2014; Sep 5 :6. doi: 10.3402/jom.v6.24878.eCollection2014.
[Moye ZD, Zeng L, Burne RA. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans [J]. J Oral Microbiol, 2014 Sep 5; 6. doi: 10.3402/jom.v6.24878.eCollection2014.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. 王 一舟, 张 雅琪, 牛 雪微, et al. 变异链球菌groE操纵子及其表达与调控 http://www.cnki.com.cn/Article/CJFDTOTAL-GWKQ201603024.htm . 国际口腔医学杂志 2016; 43 (3):348–51.
[王一舟, 张雅琪, 牛雪微, 等.变异链球菌groE操纵子及其表达与调控[J].国际口腔医学杂志, 2016, 43 (3): 348-51.] [ Google Scholar ]
8. Liu S, Tao Y, Yu L, et al. Analysis of small RNAs in Streptococcus mutans under acid Stress-A new insight for caries research. Int J Mol Sci. 2016; 17 :1529. doi: 10.3390/ijms17091529.
[Liu S, Tao Y, Yu L, et al. Analysis of small RNAs in Streptococcus mutans under acid Stress-A new insight for caries research[J]. Int J Mol Sci, 2016, 17: 1529.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. 王 成龙, 刘 佼佼, 苏 东华, et al. 高致龋性变异链球菌临床分离株的初步筛选 华西口腔医学杂志 2013; 31 (2):136–40. doi: 10.7518/hxkq.2013.02.006.
[王成龙, 刘佼佼, 苏东华, 等.高致龋性变异链球菌临床分离株的初步筛选[J].华西口腔医学杂志, 2013, 31 (2): 136-40.] [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. 王 成龙, 胡 丹阳, 刘 佼佼, et al. 不同致龋性变形链球菌临床分离株差异ssDNA配基的筛选和鉴定 http://www.cnki.com.cn/Article/CJFDTOTAL-DYJD201305026.htm . 南方医科大学学报 2013; 33 (5):738–41.
[王成龙, 胡丹阳, 刘佼佼, 等.不同致龋性变形链球菌临床分离株差异ssDNA配基的筛选和鉴定[J].南方医科大学学报, 2013, 33(5): 738-41.] [ PubMed ] [ Google Scholar ]
11. Wilkins JC, Homer KA, Beighton D. Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions. Appl Environ Microbiol. 2002; 68 (5):2382–90. doi: 10.1128/AEM.68.5.2382-2390.2002.
[Wilkins JC, Homer KA, Beighton D. Analysis of Streptococcus mutans proteins modulated by culture under acidic conditions[J]. Appl Environ Microbiol, 2002, 68 (5): 2382-90.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Klein MI, Jin X, Lu B, et al. Streptococcus mutans Protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics. PLoS One. 2012; 7 (9):e45795. doi: 10.1371/journal.pone.0045795.
[Klein MI, Jin X, Lu B, et al. Streptococcus mutans Protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics[J]. PLoS One, 2012, 7 (9): e45795.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Bolean M, Paulino TD, Thedei J. Photodynamic therapy with rose Bengal induces GroEL expression in Streptococcus mutans . https://www.researchgate.net/publication/45280504_Photodynamic_Therapy_with_Rose_Bengal_Induces_GroEL_Expression_in_Streptococcus_mutans . Photomed Laser Surg. 2010; 28 (1):S79–84.
[Bolean M, Paulino TD, Thedei J. Photodynamic therapy with rose Bengal induces GroEL expression in Streptococcus mutans [J]. Photomed Laser Surg, 2010, 28 (1): S79-84.] [ PubMed ] [ Google Scholar ]
14. Klein MI, Xiao J, Lu BW, et al. Streptococcus mutans protein synthesis during mixed-species biofilm development by highthroughput quantitative proteomics. http://www.oalib.com/paper/122282 . PLoS One. 2012; 7 (9):348–51.
[Klein MI, Xiao J, Lu BW, et al. Streptococcus mutans protein synthesis during mixed-species biofilm development by highthroughput quantitative proteomics[J]. PLoS One, 2012, 7(9): 348-51.] [ PMC free article ] [ PubMed ] [ Google Scholar ]
15. 夏 丽, 王 成龙, 储 冰峰. 生物信息学在预测和鉴定变形链球菌非编码RNA中的应用 http://www.cnki.com.cn/Article/CJFDTOTAL-ZHKQ201504001.htm . 中华老年口腔医学杂志 2015; 13 (4):193–6.
[夏丽, 王成龙, 储冰峰.生物信息学在预测和鉴定变形链球菌非编码RNA中的应用[J].中华老年口腔医学杂志, 2015, 13 (4): 193-6.] [ Google Scholar ]
16. 王 立贵, 赵 雅琳, 李 伍举. 细菌sRNA基因及其靶标预测研究进展 http://www.cnki.com.cn/Article/CJFDTOTAL-WSXB200901003.htm . 微生物学报 2009; 49 (1):1–5.
[王立贵, 赵雅琳, 李伍举.细菌sRNA基因及其靶标预测研究进展[J].微生物学报, 2009, 49 (1): 1-5.] [ Google Scholar ]
17. 肖 斌, 陈 瑜, 李 林海, et al. 兔抗弓形虫CorA家族Mg-(2+)转运蛋白多肽抗体的制备及鉴定 http://www.cnki.com.cn/Article/CJFDTOTAL-SWTX201606006.htm . 生物技术通讯 2016; 27 (6):778–82.
[肖斌, 陈瑜, 李林海, 等.兔抗弓形虫CorA家族Mg-(2+)转运蛋白多肽抗体的制备及鉴定[J].生物技术通讯, 2016, 27 (6): 778-82.] [ Google Scholar ]
18. 何 胜平, 陈 雅华, 赵 瑛瑛, et al. 肝螺杆菌甲基基团趋化信号转导蛋白多克隆抗体的制备及鉴定 http://www.j-smu.com/oa/DArticle.aspx?type=view&id=2013091295 . 南方医科大学学报 2013;(9):1295–8.
[何胜平, 陈雅华, 赵瑛瑛, 等.肝螺杆菌甲基基团趋化信号转导蛋白多克隆抗体的制备及鉴定[J].南方医科大学学报, 2013 (9): 1295-8.] [ Google Scholar ]
19. Lalaouna D, Simoneau-Roy M, Lafontaine DA. Regulatory RNAS and target mRNA decay in prokaryotes. http://www.sciencedirect.com/science/article/pii/S187493991300045X . Biochim Biophys Acta. 2013; 1829 (6/7, SI):742–7.
[Lalaouna D, Simoneau-Roy M, Lafontaine DA. Regulatory RNAS and target mRNA decay in prokaryotes[J]. Biochim Biophys Acta, 2013, 1829 (6/7, SI): 742-7.] [ PubMed ] [ Google Scholar ]
20. 赵 兴福, 黄 晓晶, 蔡 志宇, et al. 高龋患者与无龋健康人口内变形链球菌蛋白表达差异的初步分析 http://cdmd.cnki.com.cn/Article/CDMD-10392-2008154910.htm . 口腔医学研究 2008; 24 (2):127–30.
[赵兴福, 黄晓晶, 蔡志宇, 等.高龋患者与无龋健康人口内变形链球菌蛋白表达差异的初步分析[J].口腔医学研究, 2008, 24 (2): 127-30.] [ PMC free article ] [ PubMed ] [ Google Scholar ]
21. 闫啸. 分子伴侣GroEL/GroES介导重组蛋白可溶表达及折叠与组装初步研究[D]. 杭州: 浙江大学, 2012.
http://cdmd.cnki.com.cn/Article/CDMD-10335-1013303279.htm
22. Liu HH, Yan F, Liu ZR. Oscillatory dynamics in a gene regulatory network mediated by small RNA with time delay. Nonlinear Dyn. 2014; 76 (1):147–59. doi: 10.1007/s11071-013-1117-z.
[Liu HH, Yan F, Liu ZR. Oscillatory dynamics in a gene regulatory network mediated by small RNA with time delay[J]. Nonlinear Dyn, 2014, 76 (1): 147-59.] [ CrossRef ] [ Google Scholar ]
23. Zhang AX, Schu DJ, Tjaden BC, et al. Mutations in interaction surfaces differentially impact E . coli Hfq association with small RNAs and their mRNA targets. J Mol Biol. 2013; 425 (19):3678–97. doi: 10.1016/j.jmb.2013.01.006.
[Zhang AX, Schu DJ, Tjaden BC, et al. Mutations in interaction surfaces differentially impact E . coli Hfq association with small RNAs and their mRNA targets[J]. J Mol Biol, 2013, 425(19): 3678-97.] [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. Wagner R, Ümit P. CRISPR: A bacterial immunity system based on small RNAs. Berlin Heidelberg: Springer; 2012. pp. 121–43.
[Wagner R, Ümit P. CRISPR: A bacterial immunity system based on small RNAs[M]. Berlin Heidelberg: Springer. 2012: 121-43.] [ Google Scholar ]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University