* @description 射线法判断点是否在多边形内部
* @param {Object} p 待判断的点,格式:{ x: X 坐标, y: Y 坐标 }
* @param {Array} poly 多边形顶点,数组成员的格式同 p
* @return {String} 点 p 和多边形 poly 的几何关系
*/function rayCasting(p, poly) {
var px = p.x,
py = p.y,
flag = false
for(var i = 0, l = poly.length, j = l - 1; i < l; j = i, i++) {
var sx = poly[i].x,
sy = poly[i].y,
tx = poly[j].x,
ty = poly[j].y
// 点与多边形顶点重合
if((sx === px && sy === py) || (tx === px && ty === py)) {
return 'on'
// 判断线段两端点是否在射线两侧
if((sy < py && ty >= py) || (sy >= py && ty < py)) {
// 线段上与射线 Y 坐标相同的点的 X 坐标
var x = sx + (py - sy) * (tx - sx) / (ty - sy)
// 点在多边形的边上
if(x === px) {
return 'on'
// 射线穿过多边形的边界
if(x > px) {
flag = !flag
// 射线穿过多边形边界的次数为奇数时点在多边形内
return flag ? 'in' : 'out'}
除了射线法还有很多其他的方法,下面再介绍一种
回转数法
。
平面中的闭合曲线关于一个点的
回转数
(又叫卷绕数),代表了曲线绕过该点的总次数。下面这张图动态演示了回转数的概念:图中红色曲线关于点(人所在位置)的回转数为 2。
回转数是拓扑学中的一个基本概念,具有很重要的性质和用途。本文并不打算在这一点上展开论述,这需要具备相当的数学知识,否则会非常乏味和难以理解。我们暂时只需要记住回转数的一个特性就行了:
当回转数为 0 时,点在闭合曲线外部
(回转数大于 0 时所代表的含义,大家可以自己想一想,还是很有趣的)。
对于给定的点和多边形,回转数应该怎么计算呢?
* @description 回转数法判断点是否在多边形内部
* @param {Object} p 待判断的点,格式:{ x: X 坐标, y: Y 坐标 }
* @param {Array} poly 多边形顶点,数组成员的格式同 p
* @return {String} 点 p 和多边形 poly 的几何关系
*/function windingNumber(p, poly) {
var px = p.x,
py = p.y,
sum = 0
for(var i = 0, l = poly.length, j = l - 1; i < l; j = i, i++) {
var sx = poly[i].x,
sy = poly[i].y,
tx = poly[j].x,
ty = poly[j].y
// 点与多边形顶点重合或在多边形的边上
if((sx - px) * (px - tx) >= 0 && (sy - py) * (py - ty) >= 0 && (px - sx) * (ty - sy) === (py - sy) * (tx - sx)) {
return 'on'
// 点与相邻顶点连线的夹角
var angle = Math.atan2(sy - py, sx - px) - Math.atan2(ty - py, tx - px)
// 确保夹角不超出取值范围(-π 到 π)
if(angle >= Math.PI) {
angle = angle - Math.PI * 2
} else if(angle <= -Math.PI) {
angle = angle + Math.PI * 2
sum += angle
// 计算回转数并判断点和多边形的几何关系
return Math.round(sum / Math.PI) === 0 ? 'out' : 'in'}
也有人问到像下面这种复杂多边形有没有办法?答案是肯定的。至于为什么,就留给大家思考吧。