The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2022 Jul; 36(7): 822–827.
PMCID: PMC9288910

Language: Chinese | English

LARS韧带联合3D打印假体在肿瘤切除桡侧半腕关节重建术中的应用研究

Application of LARS ligament combined with three-dimensional printed prosthesis in reconstruction of radial hemicarpal joint after tumor resection

昊 丁

山东大学齐鲁医院骨肿瘤科(济南 250000), Department of Orthopedics, Qilu Hospital of Shandong University, Jinan Shandong, 250000, P. R. China

Find articles by 昊 丁

显昊 邵

山东大学齐鲁医院骨肿瘤科(济南 250000), Department of Orthopedics, Qilu Hospital of Shandong University, Jinan Shandong, 250000, P. R. China

Find articles by 显昊 邵

强 杨

山东大学齐鲁医院骨肿瘤科(济南 250000), Department of Orthopedics, Qilu Hospital of Shandong University, Jinan Shandong, 250000, P. R. China

Find articles by 强 杨

卡 李

山东大学齐鲁医院骨肿瘤科(济南 250000), Department of Orthopedics, Qilu Hospital of Shandong University, Jinan Shandong, 250000, P. R. China

Find articles by 卡 李

建民 李

山东大学齐鲁医院骨肿瘤科(济南 250000), Department of Orthopedics, Qilu Hospital of Shandong University, Jinan Shandong, 250000, P. R. China

Find articles by 建民 李

振峰 李

山东大学齐鲁医院骨肿瘤科(济南 250000), Department of Orthopedics, Qilu Hospital of Shandong University, Jinan Shandong, 250000, P. R. China 山东大学齐鲁医院骨肿瘤科(济南 250000), Department of Orthopedics, Qilu Hospital of Shandong University, Jinan Shandong, 250000, P. R. China

corresponding author Corresponding author.
李建民,Email: moc.361@mjlkg

结论

联合应用LARS韧带和3D打印假体是桡骨远端肿瘤切除术后重建骨骼及关节缺损的一种有效方式,可以改善腕关节功能,减少并发症发生,并提高腕关节稳定性。

Keywords: 桡骨远端, 骨肿瘤, LARS韧带, 3D打印假体, 半腕关节重建

Abstract

Objective

To investigate the effectiveness of LARS ligament and three-dimensional (3D) printed prosthesis on the combined reconstruction of radial hemicarpal joint after distal radius tumor resection.

Methods

The clinical data of 12 patients with combined reconstruction of radial hemicarpal joint with LARS ligament and 3D printed prosthesis after distal radius tumor resection between September 2017 and March 2021 were retrospectively analyzed. There were 7 males and 5 females with an average age of 41.8 years (range, 19-63 years). There were 8 cases on the left side and 4 cases on the right side, and 10 cases of giant cell tumor of bone and 2 cases of osteosarcoma. The disease duration ranged from 1 to 20 months, with an average of 8.1 months. The osteotomy length, operation time, and intraoperative blood loss were recorded, and the wrist function was evaluated by Mayo wrist score and Musculoskeletal Tumor Society (MSTS) score before and after operation. The grip strength of the affected limb was expressed by the percentage of grip strength of the healthy upper limb, and the range of motion (ROM) of the wrist joint was measured, including extension, flexion, radial deviation, and ulnar deviation; the bone ingrowth and osseointegration at the bone-prosthesis interface of the wrist joint were observed by radiographic follow-up; the possible wrist complications were recorded.

Results

All 12 patients successfully completed the operation. The osteotomy length was 5.0-10.5 cm (mean, 6.8 cm), and the operation time was 180-250 minutes (mean, 213.8 minutes). The intraoperative blood loss was 30-150 mL (mean, 61.7 mL). All patients were followed up 11-52 months (mean, 30.8 months). Radiographic follow-up showed that bone ingrowth and osseointegration at the bone-prosthesis interface were observed in all patients, and biological fixation was gradually achieved. During the follow-up, the stability, motor function, and ROM of the wrist joint were good. There was no complication such as arthritis, subluxation, prosthesis loosening, and infection, and no tumor recurrence and metastasis. At last follow-up, the Mayo score was 82.1±5.4, and MSTS score was 27.5±1.5, which were significantly improved when compared with those before operation (48.8±13.5, 16.4±1.4; t =−10.761, P <0.001; t =−26.600, P <0.001). The grip strength of the affected side was 59%-88% of that of the healthy side, with an average of 70.5%. The ROM of wrist joint were 55°-80° (mean, 65.42°) in extension, 35°-60° (mean, 44.58°) in flexion, 10°-25° (mean, 17.92°) in radial deviation, 10°-25° (mean, 18.33°) in ulnar deviation.

Conclusion

The combined application of LARS ligament and 3D printed prosthesis is an effective way to reconstruct bone and joint defects after distal radius tumor resection. It can improve the function of wrist joint, reduce the incidence of complications, and improve the stability of wrist joint.

Keywords: Distal radius, bone tumour, LARS ligament, three-dimensional printed prosthesis, hemicarpal reconstruction

临床中桡骨远端骨肿瘤以骨巨细胞瘤较为常见,其他骨肿瘤亦可侵及该部位,且肿瘤常侵犯腕关节,影响其功能。为减少病灶复发可能性,改善预后,多数桡骨远端侵袭性、良性及恶性肿瘤需要进行整块切除并重建。传统桡侧半腕关节重建多采用自体腓骨,存在一些弊端,包括进行性退变、腕关节不稳定和手术时间较长等 [ 1 - 4 ] 。此外,人工半腕关节假体在临床初步使用,但亦存在腕关节半脱位和无菌性松动等常见并发症,周围软组织支撑不稳定亦可导致假体植入失败 [ 1 ] 。在此基础上进一步改善假体周围骨骼与关节重建条件,实现更可靠的生物固定,可提高植入物存活率,改善腕关节远期功能。

与技术成熟且效果令人满意的髋关节置换术 [ 2 5 ] 相比,半腕关节置换术需考虑到患者个体差异、复杂解剖结构、残余关节囊重建、牢靠的骨和软组织重建等方面,以实现更满意的腕关节功能,故重建方法更复杂 [ 1 ] 。LARS韧带是一种由聚对苯二甲酸乙二醇酯制成的人造织物,对细胞和结缔组织的向内生长具有极好的生物相容性 [ 3 6 ] 。在既往研究中,LARS韧带多用于肱骨、股骨和胫骨肿瘤保肢手术中的软组织重建,可有效改善术后功能 [ 6 - 9 ] 。此外,3D打印假体作为一种用于修复重建的有效方法,已被初步证实是桡骨远端切除术后半腕关节重建的合适选择 [ 10 - 11 ] 。然而,目前尚无关于联合应用LARS韧带和3D打印假体行桡骨远端半腕关节重建的研究,也没有在其他附肢骨骼中进行此类研究。

基于这一临床需求,我们设计了一种LARS韧带及3D打印假体的联合植入物,并进行了临床初步应用。现回顾分析2017年9月—2021年3月我们对12例桡骨远端肿瘤切除患者联合应用LARS韧带和3D打印假体行桡侧半腕关节重建的临床资料。报告如下。

1. 临床资料

1.1. 一般资料

本组男7例,女5例;年龄19~63岁,平均41.8岁。左侧8例,右侧4例。骨巨细胞瘤10例,骨肉瘤2例。病程1~20个月,平均8.1个月。患者一般资料详见 表1

表 1

Clinical data of patients

患者临床资料

序号
Gender
年龄(岁)
(years)
Affected
Pathology
病程(月)
Disease
duration
(months)
手术时间(min)
Operation
(minutes)
术中出血量(mL)
Intraoperative
blood loss
截骨长度(cm)
Osteotomy
length
随访时间(月)
Follow-up
(months)
1 48 骨巨细胞瘤 7 240 30 6.7 11
2 33 骨巨细胞瘤 13 215 40 5.2 11
3 56 骨巨细胞瘤 6 215 100 10.0 47
4 19 骨巨细胞瘤 20 200 50 5.0 14
5 53 骨巨细胞瘤 12 210 100 5.7 22
6 63 骨巨细胞瘤 4 180 40 7.0 50
7 34 骨巨细胞瘤 1 190 50 5.6 45
8 63 骨巨细胞瘤 6 240 30 5.0 38
9 25 骨巨细胞瘤 9 195 50 6.9 40
10 62 骨巨细胞瘤 14 220 50 7.0 26
11 26 骨肉瘤 2 250 150 10.5 52
12 20 骨肉瘤 3 210 50 6.7 13

表 1-1

序号 ROM(°) 握力(%)
Grip strength (%)
Mayo评分
Mayo score
MSTS评分
MSTS score
Extension
Flexion
Radial deviation
Ulnar deviation
Preoperative
Postoperative
Preoperative
Postoperative
1 60 40 10 10 59 50 75 16 28
2 55 45 15 25 88 45 80 18 28
3 80 40 25 20 67 55 85 16 28
4 75 35 20 15 69 50 85 17 26
5 60 50 20 20 75 50 80 16 30
6 65 35 15 20 67 25 80 16 26
7 75 55 20 25 73 60 90 18 28
8 60 60 25 25 71 20 75 14 26
9 75 50 20 20 76 65 90 18 28
10 55 35 15 10 62 50 75 16 26
11 65 45 20 15 68 60 85 18 30
12 60 45 10 15 71 55 85 14 26

1.2. 3D打印假体和LARS韧带设计

3D打印假体(北京力达康科技有限公司)由3部分组成,包括定制高分子聚乙烯衬垫、3D打印钛轴和近端髓内柄。以每例患者健侧桡骨远端为设计模板,结合患侧桡骨CT三维重建数据进行调整,个性化设计聚乙烯衬垫的远端、尺侧和桡侧边缘,分别实现残余桡腕关节、远端桡尺关节和肱桡肌腱的精确匹配。同时聚乙烯衬垫边缘存在预制孔,以供周围软组织、关节囊缝合固定,同时也为假体植入前LARS韧带的固定提供锚点。基于患者的个体解剖特征及骨缺损面积和长度,一体定制钛轴及近端髓内柄,同时髓内柄表面制备钛颗粒涂层,可以更好地促进骨长入和骨整合。见 图1a

3D printed prosthesis and application of LARS ligament in surgery

3D打印假体及LARS韧带术中应用

a. 3D打印假体 1:高分子聚乙烯衬垫 2:3D打印钛轴 3:近端髓内柄;b. 术中LARS韧带通过预制孔被紧密缝合到假体上

a. 3D printed prosthesis 1: Polymer polyethylene liner 2: 3D printed titanium shaft 3: Proximal intramedullary stem; b. LARS ligament was tightly sutured to the prosthesis through prefabricated holes

LARS韧带(LARS公司,法国)是1条40 cm×6 cm的工业强度高韧性聚酯纤维(聚对苯二甲酸乙二醇酯),选取合适面积,通过预制孔将其紧密缝合到3D打印假体上,使LARS韧带紧密包裹假体( 图1b ),防止出现松动。

1.3. 手术方法

患者于全身麻醉下取仰卧位。手术采用前臂远端桡侧入路,解剖浅表软组织后,依据病变范围及性质谨慎保留部分桡尺关节和桡腕关节囊以及肱桡肌腱,并尽可能保留旋前方肌、保护背侧伸肌肌腱。根据术前影像学检查,在安全范围内切除病变并行桡骨近端截骨。桡骨扩髓,安装假体,使用LARS韧带包裹的3D打印假体进行骨与软组织缺损修复,并妥善、牢固、准确地将腕关节囊、尺桡关节囊及肱桡肌腱等与假体周围预制孔紧密缝合,确保其多向稳定性,防止出现周围软组织相对于LRAS韧带及假体、LARS韧带相对于假体的移位,同时减少潜在死腔。近端髓内柄根据具体情况采用骨水泥或者生物固定。所有步骤完成后,进行X线片检查,以确保假体植入满意。

1.4. 术后处理及随访指标

术后支具固定腕关节于过伸位14~21 d,拆除支具后建议患者进行多向运动,包括背屈、掌屈、桡偏、尺偏和旋转。

记录患者截骨长度、手术时间及术中出血量。术后前3个月每个月及之后每3个月进行1次影像学随访,观察腕关节骨-假体界面上的骨长入及骨整合情况。手术前后采用Mayo腕关节功能评分和美国肌肉骨骼肿瘤学会(MSTS)评分,从疼痛、活动度等多方面共同评估重建后的腕关节功能 [ 12 - 13 ] 。以与健侧上肢握力的百分比表示患肢握力,并测量腕关节活动度(range of motion,ROM),包括背伸、屈曲、桡偏、尺偏;记录腕关节并发症发生情况 [ 3 14 ]

1.5. 统计学方法

采用SPSS23.0统计软件进行分析。计量资料行正态性检验,均符合正态分布,数据以均数±标准差表示,手术前后比较采用配对 t 检验;检验水准 α =0.05。

2. 结果

12例患者均顺利完成手术,截骨长度为5.0~10.5 cm,平均6.8 cm;手术时间180~250 min,平均213.8 min;术中出血量30~150 mL,平均61.7 mL。患者均获随访,随访时间11~52个月,平均30.8个月。影像学随访示所有患者均可观察到骨-假体界面上的骨长入及骨整合现象,并逐渐实现生物固定。随访期间腕关节稳定性、运动功能及活动范围良好,无关节炎、半脱位、假体松动、感染等并发症发生,无肿瘤复发、转移等。末次随访时,Mayo评分和MSTS评分分别为(82.1±5.4)、(27.5±1.5)分,较术前(48.8±13.5)、(16.4±1.4)分均显著改善,差异有统计学意义( t =−10.761, P <0.001; t =−26.600, P <0.001)。患侧握力达健侧握力的59%~88%,平均70.5%。腕关节ROM分别为:背伸55°~80°,平均65.42°;屈曲35°~60°,平均44.58°;桡偏10°~25°,平均17.92°;尺偏10°~25°,平均18.33°。见 表1 图2

An external file that holds a picture, illustration, etc. Object name is zgxfcjwkzz-36-7-822-2.jpg

A 33-year-old female patient with giant cell tumor of left distal radius

患者,女,33岁,左侧桡骨远端骨巨细胞瘤

a. 术前X线片;b. 术中肿瘤切除和假体安装;c、d. 术后即刻正侧位X线片示假体植入满意;e、f. 术后7个月正侧位X线片示已有骨长入及骨整合;g~j. 术后11个月腕关节功能

a. Preoperative X-ray film; b. Tumor resection and prosthesis installation during operation; c, d. Anteroposterior and lateral X-ray films at immediate after operation showed satisfactory prosthesis implantation; e, f. Anteroposterior and lateral X-ray films at 7 months after operation showed bone ingrowth and osseointegration; g-j. Wrist function at 11 months after operation

3. 讨论

3.1. 既往桡侧半腕关节重建方法的局限性

随着肿瘤综合治疗的发展及手术技术的进步,骨肿瘤患者预后得到了显著改善。在此基础上,如何缩短手术时间、降低术后并发症发生率、获得更佳的肢体功能,已成为亟待解决的问题。在桡骨远端骨肿瘤切除术后,使用传统自体腓骨移植重建半腕关节时,常出现关节软骨退变、远端尺桡关节分离、骨不连等相关并发症 [ 3 - 4 15 - 16 ] 。作为一种新型植入物,3D打印假体已初步应用于四肢肿瘤切除后骨与关节缺损修复重建 [ 17 - 18 ] 。Wang等 [ 10 ] 指出,应用3D打印假体进行桡骨远端骨巨细胞瘤切除术后半腕关节重建,在改善腕关节功能方面具有不可替代的优势。首先,根据对侧桡骨制作相匹配的聚乙烯衬垫,形态吻合;第二,桡骨干的髓腔与定制假体柄相匹配,在植入时可以避免假体产生旋转;第三,假体远端边缘有7~8个小孔,为关节及软组织重建提供了足够的空间及锚点。然而,3D打印假体重建如果没有可靠的软组织长入来提供足够固定强度,也可能出现半脱位、无菌性松动等并发症 [ 6 8 ] 。Wang等 [ 10 ] 的研究就观察到了3例(20%)腕部半脱位和3例(20%)远端尺桡关节分离。

而在假体上覆盖生物相容性材料来改善软组织稳定性,则是可行的改进方法之一。合成网片包括人造合成管、LARS韧带等类型,主要以管状方式包裹覆盖假体,其已在肱骨近端肿瘤切除和假体重建中得到应用,对术后肩部功能的改善也得到了初步肯定的效果 [ 8 ] 。LARS韧带可以重建关节囊,改善关节稳定性、增强软组织强度、降低脱位率,使患者获得更好的肢体功能和更大的运动范围 [ 7 - 9 ] 。上述观点为本研究中使用LARS韧带提供了合理性和可行性。而在腕关节功能重建方面,虽然文献报道了采用合成网片包裹自体腓骨移植的1例应用,结果显示在防止术后腕关节脱位方面取得了积极进展 [ 19 ] ,但在桡骨远端肿瘤切除和半腕关节重建中使用合成网片的研究仍然非常有限。

3.2. LARS韧带和3D打印假体联合重建的优势

相较于其他重建方法,本研究中LARS韧带的应用显著增强了假体、关节囊及周围软组织的稳定性,对术后腕关节功能改善有较大促进作用,并有效减少了并发症的发生。具体而言,通过残余桡腕关节囊、残余尺桡关节囊和肱桡肌腱的缝合,分别增强了远端及前、后、内、外侧软组织结构稳定性,同时将病变周围软组织与LARS韧带、假体进行远端至近端的一圈严密缝合,形成一紧密集成的软组织包裹,减少了不同方向软组织稳固性的潜在差异,并降低了软组织相对假体松动的可能性。

此外,个体化定制的聚乙烯衬垫与每例患者的残余关节面完美匹配,避免了传统重建方法术后出现的腕关节脱位、半脱位并发症。聚乙烯衬垫及远端钛轴上的预制孔既可用于术中精确缝合假体上的残余软组织,也有助于术前将LARS韧带和3D打印假体牢固结合,还为软组织向内生长提供一简单且有效的锚点。髓内柄3D钛涂层的应用则提供了生物刺激及微孔结构的界面条件,可有效促进骨长入及骨整合,从而有效减少植入物不愈合及延迟愈合的发生。本研究中,可观察到近端骨-假体界面上有利于生物固定的骨长入。

本研究基于全包裹结构、紧密缝合和联合骨及软组织内生等优点,在术后腕关节功能及并发症发生率等方面都取得了较满意的临床疗效,术后Mayo评分和MSTS评分分别为(82.1±5.4)、(27.5±1.5)分,与文献报道的预后结果(Mayo评分和MSTS评分分别为平均71.0分和24.5分 [ 10 - 11 ] )相似甚至更优,也验证了3D打印假体在骨肿瘤缺损重建方面的优势。与传统重建方法相比,联合应用LARS韧带和3D打印假体,通过关节囊、周围软组织的紧密结合,腕关节的个性化重建,获得了更好的关节稳定性和运动功能。

术后早期支具临时固定和功能锻炼的配合有利于软组织再生。患者通常固定于过伸位,因为手掌侧屈曲力量一般更强,掌侧半脱位更常见 [ 1 3 ] 。术后功能锻炼应结合多方向运动,包括背伸、屈曲、桡偏、尺偏和旋转,以促进腕关节活动度多方向同步改善。根据患者假体固定方式不同,骨水泥固定及生物固定的患者术后锻炼范围存在差异,生物固定患者通常锻炼范围更局限,这就导致了其远期腕关节功能相对欠佳。因患者数量较少,本研究未就此进行统计学分析。

3.3. 局限性

本研究存在以下局限性。首先,由于桡骨远端肿瘤患者较少,以及LARS韧带和3D打印假体联合应用时间较短,参与本研究的患者数量有限,作为一种新的重建方法,还需要进行多中心、大规模的长期研究。第二,本研究缺乏与其他半腕关节重建方式,如自体腓骨移植重建、单纯3D打印假体重建等进行对照研究。第三,由于该重建方法复杂,因此需要具有熟练操作技术的外科医生进行术中缝合重建。第四,纳入患者均在术前被明确告知LARS韧带和3D打印假体联合重建方法的特性及与传统术式的区别,从而导致了选择偏倚。

综上述,与传统半腕关节重建方法比较,LARS韧带和3D打印假体联合应用获得了更好的术后功能,减少了并发症的发生。这一令人满意的初步结果可能归因于LARS韧带和3D打印假体在重建骨骼、关节缺损方面的优势以及特殊外科技术的应用。对于桡骨远端侵袭性肿瘤引起的骨和关节缺损患者,这种新颖且有效的重建方式可能会广泛改善总体预后,值得进一步探索。

利益冲突 在课题研究和文章撰写方面不存在利益冲突

伦理声明 研究方案经山东大学齐鲁医院医学伦理委员会批准(KYLL-202103-021);所有患者均知情同意

作者贡献声明 丁昊、邵显昊:参与研究设计及实施,收集临床病例资料,数据收集整理及分析,文章撰写;杨强、李卡:参与研究设计,患者围术期管理及术后康复;李建民、李振峰:手术实施、收集数据资料,对研究设计和文章进行批评性审阅

References

1. Liu W, Wang B, Zhang S, et al Wrist reconstruction after en bloc resection of bone tumors of the distal radius. Orthop Surg. 2021; 13 (2):376–383. doi: 10.1111/os.12737. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Humail SM, Ghulam MK, Zaidi IH Reconstruction of the distal radius with non-vascularised fibular graft after resection of giant cell tumour of bone. J Orthop Surg (Hong Kong) 2014; 22 (3):356–359. doi: 10.1177/230949901402200318. [ PubMed ] [ CrossRef ] [ Google Scholar ]
3. Qi DW, Wang P, Ye ZM, et al Clinical and radiographic results of reconstruction with fibular autograft for distal radius giant cell tumor. Orthop Surg. 2016; 8 (2):196–204. doi: 10.1111/os.12242. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. 刘刚, 李佳琪, 黄俊琪, 等 带血管蒂腓骨瓣移植重建CampanacciⅢ级桡骨远端骨巨细胞瘤切除术后桡腕关节的远期疗效 中国修复重建外科杂志 2020; 34 (3):352–356. [ Google Scholar ]
5. Hu P, Zhao L, Zhang H, et al Recurrence rates and risk factors for primary giant cell tumors around the knee: A multicentre retrospective study in China. Sci Rep. 2016; 6 :36332. doi: 10.1038/srep36332. doi: 10.1038/srep36332. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Ji T, Tang X, Guo W The use of Ligament Advanced Reinforcement System (LARS) in limb salvage surgery: a pilot clinical study. J Arthroplasty. 2013; 28 (6):892–894. doi: 10.1016/j.arth.2012.11.011. [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Ji T, Tang X, Guo W Enhancing soft-tissue reattachment in proximal humeral endoprosthetic reconstruction. J Orthop Surg (Hong Kong) 2014; 22 (1):100–103. doi: 10.1177/230949901402200125. [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Tang X, Guo W, Yang R, et al Synthetic mesh improves shoulder function after intraarticular resection and prosthetic replacement of proximal humerus. Clin Orthop Relat Res. 2015; 473 (4):1464–1471. doi: 10.1007/s11999-015-4139-7. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Du Z, Tang S, Yang R, et al Use of an artificial ligament decreases hip dislocation and improves limb function after total femoral prosthetic replacement following femoral tumor resection. J Arthroplasty. 2018; 33 (5):1507–1514. doi: 10.1016/j.arth.2017.12.017. [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Wang Y, Min Li, Lu M, et al The functional outcomes and complications of different reconstruction methods for Giant cell tumor of the distal radius: comparison of Osteoarticular allograft and three-dimensional-printed prosthesis. BMC Musculoskelet Disord. 2020; 21 (1):69. doi: 10.1186/s12891-020-3084-0. doi: 10.1186/s12891-020-3084-0. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. Lu M, Min L, Xiao C, et al Uncemented three-dimensional-printed prosthetic replacement for giant cell tumor of distal radius: a new design of prosthesis and surgical techniques. Cancer Manag Res. 2018; 10 :265–277. doi: 10.2147/CMAR.S146434. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Cooney WP, Linscheid RL, Dobyns JH Triangular fibrocartilage tears. J Hand Surg (Am) 1994; 19 (1):143–154. doi: 10.1016/0363-5023(94)90238-0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
13. Enneking WF, Dunham W, Gebhardt MC, et al A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res. 1993;(286):241–246. [ PubMed ] [ Google Scholar ]
14. Knirk JL, Jupiter JB Intra-articular fractures of the distal end of the radius in young adults. J Bone Joint Surg (Am) 1986; 68 (5):647–659. doi: 10.2106/00004623-198668050-00003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Innocenti M, Muratori F, Foschi L, et al. Salvage of limb salvage in oncological reconstructions of the lower limb with megaprosthesis: how much to push the boundaries? Arch Orthop Trauma Surg, 2021. doi: 10.1007/s00402-021-04165-8.
16. 毕郑钢, 潘琦, 付春江, 等 吻合血管腓骨小头移植重建腕关节治疗桡骨远端骨巨细胞瘤 中国修复重建外科杂志 2010; 24 (12):1416–1418. [ PubMed ] [ Google Scholar ]
17. Guder WK, Hardes J, Nottrott M, et al Highly cancellous titanium alloy (TiAl 6 V 4 ) surfaces on three-dimensionally printed, custom-made intercalary tibia prostheses: Promising short- to intermediate-term results . J Pers Med. 2021; 11 (5):351. doi: 10.3390/jpm11050351. doi: 10.3390/jpm11050351. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Liu W, Shao Z, Rai S, et al Three-dimensional-printed intercalary prosthesis for the reconstruction of large bone defect after joint-preserving tumor resection. J Surg Oncol. 2020; 121 (3):570–577. doi: 10.1002/jso.25826. [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Wiratnaya IGE, Budiartha IGBAM, Setiawan IGNY, et al Hernia mesh prevent dislocation after wide excision and reconstruction of giant cell tumor distal radius. World J Orthop. 2017; 8 (9):741–746. doi: 10.5312/wjo.v8.i9.741. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Chinese Journal of Reparative and Reconstructive Surgery are provided here courtesy of Sichuan University