首先给出展示结果,大体就是检测工业板子是否出现。采取检测的方法比较简单,用的OpenCV的模板检测。
在这里插入图片描述

  • opencv读取视频
  • 将视频分割为帧
  • 对每一帧进行处理(opencv模板匹配)
  • 在将此帧写入pipe管道
  • 利用ffmpeg进行推流直播

中间遇到的问题

在处理本地视频时,并没有延时卡顿的情况。但对实时视频流的时候,出现了卡顿延时的效果。在一顿度娘操作之后,采取了多线程的方法。

opencv读取视频

def run_opencv_camera():
    video_stream_path = 0 
    # 当video_stream_path = 0 会开启计算机 默认摄像头  也可以为本地视频文件的路径
    cap = cv2.VideoCapture(video_stream_path)
    while cap.isOpened():
        is_opened, frame = cap.read()
        cv2.imshow('frame', frame)
        cv2.waitKey(1)
    cap.release()

OpenCV模板匹配

模板匹配就是在一幅图像中寻找一个特定目标的方法之一,这种方法的原理非常简单,遍历图像中每一个可能的位置,比较各处与模板是否相似,当相似度足够高时,就认为找到了目标。

def template_match(img_rgb):
    # 灰度转换
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
    # 模板匹配
    res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
    # 设置阈值
    threshold = 0.8
    loc = np.where(res >= threshold)
    if len(loc[0]):
        # 这里直接固定区域
        cv2.rectangle(img_rgb, (155, 515), (1810, 820), (0, 0, 255), 3)
        cv2.putText(img_rgb, category, (240, 600), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.putText(img_rgb, Confidence, (240, 640), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.putText(img_rgb, Precision, (240, 680), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.putText(img_rgb, product_yield, (240, 720), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.putText(img_rgb, result, (240, 780), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 5)
    return img_rgb

FFmpeg推流

  • 在Ubuntu 14 上安装 Nginx-RTMP 流媒体服务器
    https://www.cnblogs.com/cocoajin/p/4353767.html
import subprocess as sp
rtmpUrl = ""
camera_path = ""
cap = cv.VideoCapture(camera_path)
# Get video information
fps = int(cap.get(cv.CAP_PROP_FPS))
width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))
# ffmpeg command
command = ['ffmpeg',
        '-y',
        '-f', 'rawvideo',
        '-vcodec','rawvideo',
        '-pix_fmt', 'bgr24',
        '-s', "{}x{}".format(width, height),
        '-r', str(fps),
        '-i', '-',
        '-c:v', 'libx264',
        '-pix_fmt', 'yuv420p',
        '-preset', 'ultrafast',
        '-f', 'flv', 
        rtmpUrl]
# 管道配置
p = sp.Popen(command, stdin=sp.PIPE)
# read webcamera
while(cap.isOpened()):
    ret, frame = cap.read()
    if not ret:
        print("Opening camera is failed")
        break
    # process frame
    # your code
    # process frame
    # write to pipe
    p.stdin.write(frame.tostring())
  • 说明:rtmp是要接受视频的服务器,服务器按照上面所给连接地址即可。

多线程处理

  • python mutilprocessing多进程编程 https://blog.csdn.net/jeffery0207/article/details/82958520
def image_put(q):
    # 采取本地视频验证
    cap = cv2.VideoCapture("./new.mp4")
    # 采取视频流的方式
    # cap = cv2.VideoCapture(0)
    # cap.set(cv2.CAP_PROP_FRAME_WIDTH,1920)
    # cap.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)
    if cap.isOpened():
        print('success')
    else:
        print('faild')
    while True:
        q.put(cap.read()[1])
        q.get() if q.qsize() > 1 else time.sleep(0.01)
def image_get(q):
    while True:
        # start = time.time()
        #flag += 1
        frame = q.get()
        frame = template_match(frame)
        # end = time.time()
        # print("the time is", end-start)
        cv2.imshow("frame", frame)
        cv2.waitKey(0)
        # pipe.stdin.write(frame.tostring())
        #cv2.imwrite(save_path + "%d.jpg"%flag,frame)
# 多线程执行一个摄像头
def run_single_camera():
    # 初始化
    mp.set_start_method(method='spawn')  # init
    queue = mp.Queue(maxsize=2)
    processes = [mp.Process(target=image_put, args=(queue, )),
                 mp.Process(target=image_get, args=(queue, ))]
    [process.start() for process in processes]
    [process.join() for process in processes]
def run():
    run_single_camera()  # quick, with 2 threads
  • 说明:使用Python3自带的多线程模块mutilprocessing模块,创建一个队列,线程A从通过rstp协议从视频流中读取出每一帧,并放入队列中,线程B从队列中将图片取出,处理后进行显示。线程A如果发现队列里有两张图片,即线程B的读取速度跟不上线程A,那么线程A主动将队列里面的旧图片删掉,换新图片。

全部代码展示

import time
import multiprocessing as mp
import numpy as np
import  random
import subprocess as sp
import cv2
import os
# 定义opencv所需的模板
template_path = "./high_img_template.jpg"
# 定义矩形框所要展示的变量
category = "Category:      board"
var_confidence = (np.random.randint(86, 98)) / 100
Confidence = "Confidence:     " + str(var_confidence)
var_precision = round(random.uniform(98, 99), 2)
Precision = "Precision:    " + str(var_precision) + "%"
product_yield = "Product Yield:  100%"
result = "Result: perfect"
# 读取模板并获取模板的高度和宽度
template = cv2.imread(template_path, 0)
h, w = template.shape[:2]
# 定义模板匹配函数
def template_match(img_rgb):
    # 灰度转换
    img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
    # 模板匹配
    res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
    # 设置阈值
    threshold = 0.8
    loc = np.where(res >= threshold)
    if len(loc[0]):
        # 这里直接固定区域
        cv2.rectangle(img_rgb, (155, 515), (1810, 820), (0, 0, 255), 3)
        cv2.putText(img_rgb, category, (240, 600), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.putText(img_rgb, Confidence, (240, 640), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.putText(img_rgb, Precision, (240, 680), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.putText(img_rgb, product_yield, (240, 720), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
        cv2.putText(img_rgb, result, (240, 780), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 5)
    return img_rgb
# 视频属性
size = (1920, 1080)
sizeStr = str(size[0]) + 'x' + str(size[1])
# fps = cap.get(cv2.CAP_PROP_FPS)  # 30p/self
# fps = int(fps)
fps = 11
hz = int(1000.0 / fps)
print ('size:'+ sizeStr + ' fps:' + str(fps) + ' hz:' + str(hz))
rtmpUrl = 'rtmp://localhost/hls/test'
# 直播管道输出
# ffmpeg推送rtmp 重点 : 通过管道 共享数据的方式
command = ['ffmpeg',
    '-y',
    '-f', 'rawvideo',
    '-vcodec','rawvideo',
    '-pix_fmt', 'bgr24',
    '-s', sizeStr,
    '-r', str(fps),
    '-i', '-',
    '-c:v', 'libx264',
    '-pix_fmt', 'yuv420p',
    '-preset', 'ultrafast',
    '-f', 'flv',
    rtmpUrl]
#管道特性配置
# pipe = sp.Popen(command, stdout = sp.PIPE, bufsize=10**8)
pipe = sp.Popen(command, stdin=sp.PIPE) #,shell=False
# pipe.stdin.write(frame.tostring())
def image_put(q):
    # 采取本地视频验证
    cap = cv2.VideoCapture("./new.mp4")
    # 采取视频流的方式
    # cap = cv2.VideoCapture(0)
    # cap.set(cv2.CAP_PROP_FRAME_WIDTH,1920)
    # cap.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)
    if cap.isOpened():
        print('success')
    else:
        print('faild')
    while True:
        q.put(cap.read()[1])
        q.get() if q.qsize() > 1 else time.sleep(0.01)
# 采取本地视频的方式保存图片
save_path = "./res_imgs"
if os.path.exists(save_path):
    os.makedir(save_path)
def image_get(q):
    while True:
        # start = time.time()
        #flag += 1
        frame = q.get()
        frame = template_match(frame)
        # end = time.time()
        # print("the time is", end-start)
        cv2.imshow("frame", frame)
        cv2.waitKey(0)
        # pipe.stdin.write(frame.tostring())
        #cv2.imwrite(save_path + "%d.jpg"%flag,frame)
# 多线程执行一个摄像头
def run_single_camera():
    # 初始化
    mp.set_start_method(method='spawn')  # init
    queue = mp.Queue(maxsize=2)
    processes = [mp.Process(target=image_put, args=(queue, )),
                 mp.Process(target=image_get, args=(queue, ))]
    [process.start() for process in processes]
    [process.join() for process in processes]
def run():
    run_single_camera()  # quick, with 2 threads
if __name__ == '__main__':
    run()
  
  1. 在Ubuntu 14 上安装 Nginx-RTMP 流媒体服务器:https://www.cnblogs.com/cocoajin/p/4353767.html
    1. python mutilprocessing多进程编程:https://blog.csdn.net/jeffery0207/article/details/82958520
    1. ffmpeg 将视频和图片互转化:https://blog.csdn.net/TingiBanDeQu/article/details/53896944
    1. 基于python2.7的opencv3.3-ffmpeg-rtmp视频处理并推送流直播:https://blog.csdn.net/u014303844/article/details/80394101
    1. 读取多个(海康\大华)网络摄像头的视频流 (使用opencv-python),解决实时读取延迟问题:https://zhuanlan.zhihu.com/p/38136322
    1. python利用ffmpeg进行rtmp推流直播:https://zhuanlan.zhihu.com/p/74260950
  • Python实现推流直播首先给出展示结果,大体就是检测工业板子是否出现。采取检测的方法比较简单,用的OpenCV的模板检测。大体思路opencv读取视频将视频分割为帧对每一帧进行处理(opencv模板匹配)在将此帧写入pipe管道利用ffmpeg进行推流直播中间遇到的问题在处理本地视频时,并没有延时卡顿的情况。但对实时视频流的时候,出现了卡顿延时的效果。在一顿度娘操作之后,... Python推流本质是调用FFmpeg推流进程,所以" pipe.stdin.write(img.tobytes()) "这句话报错时,可以考虑是FFmpeg没有配置的原因。      推流术语…省略。 import cv2 # subprocess 模块允许我们启动一个新进程,并连接到它们的输入/输出/错误管道,从而获取返回值。 import subprocess # 视频读取对象 cap = cv2.VideoCapture(".../xx.mp4") # 读取一帧
    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言python操作ffmpeg推流0 需求:1.搭建流媒体服务2 python脚本3 验证结果:总结 提示:这里可以添加本文要记录的大概内容: 例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。 提示:以下是本篇文章正文内容,下面案例可供参考 python操作ffmpeg推流 0 需求: 将一个rtsp流 经过流媒体服务,推送成rtmp 供 vlc查.