The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The
https://
ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,
the contents by NLM or the National Institutes of Health.
Learn more:
PMC Disclaimer
Zhejiang Da Xue Xue Bao Yi Xue Ban.
2023 Jun 25; 52(3): 259–266.
Language:
Chinese
|
English
用于眼内药物递送的有机纳米载体研究
Application of organic nanocarriers for intraocular drug delivery
,
1,
2
,
1
,
1,
2
and
1
常 湾湾
1
苏州大学功能纳米与软物质研究院 江苏省碳基功能材料与器件重点实验室, ,江苏
215123
2
澳门科技大学澳门材料科学与工程研究院, ,澳门
999078
沈 菁菁
1
苏州大学功能纳米与软物质研究院 江苏省碳基功能材料与器件重点实验室, ,江苏
215123
刘 庄
1
苏州大学功能纳米与软物质研究院 江苏省碳基功能材料与器件重点实验室, ,江苏
215123
2
澳门科技大学澳门材料科学与工程研究院, ,澳门
999078
陈 倩
1
苏州大学功能纳米与软物质研究院 江苏省碳基功能材料与器件重点实验室, ,江苏
215123
2
澳门科技大学澳门材料科学与工程研究院, ,澳门
Biotechnology and biomaterial-based therapeutic strategies for age-related macular degeneration. part Ⅰ: biomaterials-based drug delivery devices
[J].
Front Bioeng Biotechnol
, 2020,
8
: 549089. 10.3389/fbioe.2020.549089
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
DAVE R S, GOOSTREY T C, ZIOLKOWSKA M, et al..
Ocular drug delivery to the anterior segment using nanocarriers: a mucoadhesive/mucopenetrative perspec-tive
[J].
J Control Release
, 2021,
336
: 71-88. 10.1016/j.jconrel.2021.06.011 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
GUAN X, FU M, LIN F, et al..
Burden of visual impairment associated with eye diseases: exploratory survey of 298 Chinese patients
[J/OL].
BMJ Open
, 2019,
9
(
9
): e030561. 10.1136/bmjopen-2019-030561
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
BACHU R D, CHOWDHURY P, AL-SAEDI Z H F, et al..
Ocular drug delivery barriers-role of nanocar-riers in the treatment of anterior segment ocular diseases
[J].
Pharmaceutics
, 2018,
10
(
1
): 28. 10.3390/pharmaceutics10010028
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
KESHARWANI P, GORAIN B, LOW S Y, et al..
Nanotechnology based approaches for anti-diabetic drugs delivery
[J].
Diabetes Res Clin Pract
, 2018,
136
: 52-77. 10.1016/j.diabres.2017.11.018 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
TANG J Q, HOU X Y, YANG C S, et al..
Recent developments in nanomedicine for melanoma treatment
[J].
Int J Cancer
, 2017,
141
(
4
): 646-653. 10.1002/ijc.30708 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
DUAN X, LI Y.
Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking
[J].
Small
, 2013,
9
(
9-10
): 1521-1532. 10.1002/smll.201201390 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
JANAGAM D R, WU L, LOWE T L.
Nanoparticles for drug delivery to the anterior segment of the eye
[J].
Adv Drug Deliv Rev
, 2017,
122
: 31-64. 10.1016/j.addr.2017.04.001
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
WANG Y, XU X, GU Y, et al..
Recent advance of nanoparticle-based topical drug delivery to the posterior segment of the eye
[J].
Expert Opin Drug Deliv
, 2018,
15
(
7
): 687-701. 10.1080/17425247.2018.1496080 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
KAUR I P, KAKKAR S.
Nanotherapy for posterior eye diseases
[J].
J Control Release
, 2014,
193
: 100-112. 10.1016/j.jconrel.2014.05.031 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
VARELA-FERNANDEZ R, DIAZ-TOME V, LUACES-RODRIGUEZ A, et al..
Drug delivery to the posterior segment of the eye: biopharmaceutic and pharma-cokinetic considerations
[J].
Pharmaceutics
, 2020,
12
(
3
): 269. 10.3390/pharmaceutics12030269
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
SURI R, BEG S, KOHLI K.
Target strategies for drug delivery bypassing ocular barriers
[J].
J Drug Del Sci and Tec
, 2020,
55
: 1773-2247. 10.1016/j.jddst.2019.101389 [
CrossRef
]
[
Google Scholar
]
15.
JUMELLE C, GHOLIZADEH S, ANNABI N, et al..
Advances and limitations of drug delivery systems formulated as eye drops
[J].
J Control Release
, 2020,
321
: 1-22. 10.1016/j.jconrel.2020.01.057
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
GEORGIEV G A, EFTIMOV P, YOKOI N.
Contribution of mucins towards the physical properties of the tear film: a modern update
[J].
Int J Mol Sci
, 2019,
20
(
24
): 6132. 10.3390/ijms20246132
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
HUANG D, CHEN Y S, RUPENTHAL I D.
Overcoming ocular drug delivery barriers through the use of physical forces
[J].
Adv Drug Deliv Rev
, 2018,
126
: 96-112. 10.1016/j.addr.2017.09.008 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
WENG Y, LIU J, JIN S, et al..
Nanotechnology-based strategies for treatment of ocular disease
[J].
Acta Pharm Sin B
, 2017,
7
(
3
): 281-291. 10.1016/j.apsb.2016.09.001
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
NAIR A B, SHAH J, AL-DHUBIAB B E, et al..
Clarithromycin solid lipid nanoparticles for topical ocular therapy: optimization, evaluation and
in vivo
studies
[J].
Pharmaceutics
, 2021,
13
(
4
): 523. 10.3390/pharmaceutics13040523
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
GONZÁLEZ-FERNÁNDEZ F M, DELLEDONNE A, NICOLI S, et al..
Nanostructured lipid carriers for enhanced transscleral delivery of dexamethasone acetate: development,
ex vivo
characterization and multiphoton microscopy studies
[J].
Pharmaceutics
, 2023,
15
(
2
): 407. 10.3390/pharmaceutics15020407
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
PUGLIA C, SANTONOCITO D, OSTACOLO C, et al..
Ocular formulation based on palmitoylethanolamide-loaded nanostructured lipid carriers: technological and pharmacological profile
[J].
Nanomaterials (Basel)
, 2020,
10
(
2
): 287. 10.3390/nano10020287
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
TAN G, LI J, SONG Y, et al..
Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanos-tructured lipid carriers for the treatment of dry eye syndrome
[J].
Acta Biomater
, 2019,
99
: 350-362. 10.1016/j.actbio.2019.08.035 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
ZHAN C, SANTAMARIA C M, WANG W, et al..
Long-acting liposomal corneal anesthetics
[J].
Biomaterials
, 2018,
181
: 372-377. 10.1016/j.biomaterials.2018.07.054
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
PUGLIA C, SANTONOCITO D, ROMEO G, et al..
Lipid nanoparticles traverse non-corneal path to reach the posterior eye segment:
in vivo
evidence
[J].
Molecules
, 2021,
26
(
15
): 4673. 10.3390/molecules26154673
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
HUANG H, YANG X, LI H, et al..
iRGD decorated liposomes: a novel actively penetrating topical ocular drug delivery strategy
[J].
Nano Res
, 2020,
13
(
11
): 3105-3109. 10.1007/s12274-020-2980-9 [
CrossRef
]
[
Google Scholar
]
26.
PATEL S, RYALS R C, WELLER K K, et al..
Lipid nanoparticles for delivery of messenger RNA to the back of the eye
[J].
J Control Release
, 2019,
303
: 91-100. 10.1016/j.jconrel.2019.04.015
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
HERRERA-BARRERA M, RYALS R C, GAUTAM M, et al..
Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates
[J].
Sci Adv
, 2023,
9
(
2
): eadd4623. 10.1126/sciadv.add4623
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
28.
WANG J, LI B, HUANG D, et al..
Nano-in-nano dendrimer gel particles for efficient topical delivery of antiglaucoma drugs into the eye
[J].
Chem Eng J
, 2021,
425
: 130498. 10.1016/j.cej.2021.130498
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
29.
RODRÍGUEZ VILLANUEVA J, NAVARRO M G, RODRÍGUEZ VILLANUEVA L.
Dendrimers as a promising tool in ocular therapeutics: latest advances and perspectives
[J].
Int J Pharm
, 2016,
511
(
1
): 359-366. 10.1016/j.ijpharm.2016.07.031 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
30.
YANG H, TYAGI P, KADAM R S, et al..
Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration
[J].
ACS Nano
, 2012,
6
(
9
): 7595-7606. 10.1021/nn301873v [
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
YOU S, KIM H, JUNG H Y, et al..
Tuning surface functionalities of sub-10 nm-sized nanocarriers to target outer retina in designing drug delivery agents for intravitreal administration
[J].
Biomaterials
, 2020,
255
: 120188. 10.1016/j.biomaterials.2020.120188 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
LYNCH C, KONDIAH P, CHOONARA Y E, et al..
Advances in biodegradable nano-sized polymer-based ocular drug delivery
[J].
Polymers (Basel)
, 2019,
11
(
8
): 1371. 10.3390/polym11081371
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
33.
ZHENG Q, LI L, LIU M, et al..
In situ
scavenging of mitochondrial ROS by anti-oxidative MitoQ/hyaluronic acid nanoparticles for environment-induced dry eye disease therapy
[J].
Chem Eng J
, 2020,
398
: 125621. 10.1016/j.cej.2020.125621 [
CrossRef
]
[
Google Scholar
]
34.
KIM Y C, SHIN M D, HACKETT S F, et al..
Gelling hypotonic polymer solution for extended topical drug delivery to the eye
[J].
Nat Biomed Eng
, 2020,
4
(
11
): 1053-1062. 10.1038/s41551-020-00606-8
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
35.
NATARAJAN J V, NUGRAHA C, NG X W, et al..
Sustained-release from nanocarriers: a review
[J].
J Control Release
, 2014,
193
: 122-138. 10.1016/j.jconrel.2014.05.029 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
36.
TSUJINAKA H, FU J, SHEN J, et al..
Sustained treatment of retinal vascular diseases with self-aggregating sunitinib microparticles
[J].
Nat Commun
, 2020,
11
(
1
): 694. 10.1038/s41467-020-14340-x
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
37.
MANDAL A, PAL D, AGRAHARI V, et al..
Ocular delivery of proteins and peptides: challenges and novel formulation approaches
[J].
Adv Drug Deliv Rev
, 2018,
126
: 67-95. 10.1016/j.addr.2018.01.008
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
SHEN J, GAO H, CHEN L, et al..
Eyedrop-based macromolecular ophthalmic drug delivery for ocular fundus disease treatment
[J].
Sci Adv
, 2023,
9
(
4
): eabq3104. 10.1126/sciadv.abq3104
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
39.
GAO H, CHEN M, LIU Y, et al..
Injectable anti-inflammatory supramolecular nanofiber hydrogel to promote anti-VEGF therapy in age-related macular degeneration treatment
[J].
Adv Mater
, 2022,
35
: 2204994. 10.1002/adma.202204994 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
LI M, XU Z, ZHANG L, et al..
Targeted noninvasive treatment of choroidal neovascularization by hybrid cell-membrane-cloaked biomimetic nanoparticles
[J].
ACS Nano
, 2021,
15
(
6
): 9808-9819. 10.1021/acsnano.1c00680 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
41.
QIN M, DU G, SUN X.
Biomimetic cell-derived nanocarriers for modulating immune responses
[J].
Biomater Sci
, 2020,
8
(
2
): 530-543. 10.1039/c9bm01444f [
PubMed
] [
CrossRef
]
[
Google Scholar
]
42.
RAN M, DENG Y, YAN J, et al..
Neovascularization-directed bionic eye drops for noninvasive renovation of age-related macular degeneration
[J].
Chem Eng J
, 2022,
450
: 138291. 10.1016/j.cej.2022.138291 [
CrossRef
]
[
Google Scholar
]
43.
CHEN L, WU F, PANG Y, et al..
Therapeutic nanocoating of ocular surface
[J].
Nano Today
, 2021,
41
: 101309. 10.1016/j.nantod.2021.101309 [
CrossRef
]
[
Google Scholar
]
44.
TIAN Y, ZHANG F, QIU Y, et al..
Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells
[J].
Nat Biomed Eng
, 2021,
5
(
9
): 968-982. 10.1038/s41551-021-00764-3 [
PubMed
] [
CrossRef
]
[
Google Scholar
]
45.
QAMAR Z, QIZILBASH F F, IQUBAL M K, et al..
Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective
[J].
Recent Pat Drug Deliv Formul
, 2019,
13
(
4
): 246-254. 10.2174/1872211314666191224115211
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
Articles from
Journal of Zhejiang University (Medical Sciences)
are provided here courtesy of
Zhejiang University Press