相关文章推荐
刚失恋的烤面包  ·  String.CompareToIgnore ...·  6 月前    · 
心软的针织衫  ·  SQL datagrip-阿里云·  1 年前    · 
眉毛粗的草稿纸  ·  android Textview ...·  2 年前    · 

Repository files navigation

🦙 LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions

by Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, Victor Lempitsky.

🔥🔥🔥 LaMa generalizes surprisingly well to much higher resolutions (~2k❗️) than it saw during training (256x256), and achieves the excellent performance even in challenging scenarios, e.g. completion of periodic structures.

[ Project page ] [ arXiv ] [ Supplementary ] [ BibTeX ] [ Casual GAN Papers Summary ]

Non-official 3rd party apps:

(Feel free to share your app/implementation/demo by creating an issue)

  • https://github.com/enesmsahin/simple-lama-inpainting - a simple pip package for LaMa inpainting.
  • https://github.com/mallman/CoreMLaMa - Apple's Core ML model format
  • https://cleanup.pictures - a simple interactive object removal tool by @cyrildiagne
  • lama-cleaner by @Sanster is a self-host version of https://cleanup.pictures
  • Integrated to Huggingface Spaces with Gradio . See demo: Hugging Face Spaces by @AK391
  • Telegram bot @MagicEraserBot by @Moldoteck , code
  • Auto-LaMa = DE:TR object detection + LaMa inpainting by @andy971022
  • LAMA-Magic-Eraser-Local = a standalone inpainting application built with PyQt5 by @zhaoyun0071
  • Hama - object removal with a smart brush which simplifies mask drawing.
  • ModelScope = the largest Model Community in Chinese by @chenbinghui1 .
  • LaMa with MaskDINO = MaskDINO object detection + LaMa inpainting with refinement by @qwopqwop200 .
  • CoreMLaMa - a script to convert Lama Cleaner's port of LaMa to Apple's Core ML model format.
  • Environment setup

    ❗️❗️❗️ All yandex dist links went bad, you can download the model from the google drive ❗️❗️❗️

    Clone the repo: git clone https://github.com/advimman/lama.git

    There are three options of an environment:

    Python virtualenv:

    virtualenv inpenv --python=/usr/bin/python3
    source inpenv/bin/activate
    pip install torch==1.8.0 torchvision==0.9.0
    cd lama
    pip install -r requirements.txt 
    

    Conda

    % Install conda for Linux, for other OS download miniconda at https://docs.conda.io/en/latest/miniconda.html
    wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
    bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda
    $HOME/miniconda/bin/conda init bash
    cd lama
    conda env create -f conda_env.yml
    conda activate lama
    conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch -y
    pip install pytorch-lightning==1.2.9
    

    Docker: No actions are needed 🎉.

    Inference

    cd lama
    export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd)
    

    1. Download pre-trained models

    The best model (Places2, Places Challenge):

    curl -LJO https://huggingface.co/smartywu/big-lama/resolve/main/big-lama.zip
    unzip big-lama.zip
    

    All models (Places & CelebA-HQ):

    download [https://drive.google.com/drive/folders/1B2x7eQDgecTL0oh3LSIBDGj0fTxs6Ips?usp=drive_link]
    unzip lama-models.zip
    

    2. Prepare images and masks

    Download test images:

    unzip LaMa_test_images.zip
     OR prepare your data:
    1) Create masks named as `[images_name]_maskXXX[image_suffix]`, put images and masks in the same folder. 
    
  • You can use the script for random masks generation.
  • Check the format of the files:
    image1_mask001.png
    image1.png
    image2_mask001.png
    image2.png
    
  • Specify image_suffix, e.g. .png or .jpg or _input.jpg in configs/prediction/default.yaml.
  • 3. Predict

    On the host machine:

    python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output
    

    OR in the docker

    The following command will pull the docker image from Docker Hub and execute the prediction script

    bash docker/2_predict.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output device=cpu
    

    Docker cuda:

    bash docker/2_predict_with_gpu.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output
    

    4. Predict with Refinement

    On the host machine:

    python3 bin/predict.py refine=True model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output
    

    Train and Eval

    Make sure you run:

    cd lama
    export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd)
    

    Then download models for perceptual loss:

    mkdir -p ade20k/ade20k-resnet50dilated-ppm_deepsup/
    wget -P ade20k/ade20k-resnet50dilated-ppm_deepsup/ http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth
    

    Places

    ⚠️ NB: FID/SSIM/LPIPS metric values for Places that we see in LaMa paper are computed on 30000 images that we produce in evaluation section below. For more details on evaluation data check [Section 3. Dataset splits in Supplementary] ⚠️

    On the host machine:

    # Download data from http://places2.csail.mit.edu/download.html
    # Places365-Standard: Train(105GB)/Test(19GB)/Val(2.1GB) from High-resolution images section
    wget http://data.csail.mit.edu/places/places365/train_large_places365standard.tar
    wget http://data.csail.mit.edu/places/places365/val_large.tar
    wget http://data.csail.mit.edu/places/places365/test_large.tar
    # Unpack train/test/val data and create .yaml config for it
    bash fetch_data/places_standard_train_prepare.sh
    bash fetch_data/places_standard_test_val_prepare.sh
    # Sample images for test and viz at the end of epoch
    bash fetch_data/places_standard_test_val_sample.sh
    bash fetch_data/places_standard_test_val_gen_masks.sh
    # Run training
    python3 bin/train.py -cn lama-fourier location=places_standard
    # To evaluate trained model and report metrics as in our paper
    # we need to sample previously unseen 30k images and generate masks for them
    bash fetch_data/places_standard_evaluation_prepare_data.sh
    # Infer model on thick/thin/medium masks in 256 and 512 and run evaluation 
    # like this:
    python3 bin/predict.py \
    model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier_/ \
    indir=$(pwd)/places_standard_dataset/evaluation/random_thick_512/ \
    outdir=$(pwd)/inference/random_thick_512 model.checkpoint=last.ckpt
    python3 bin/evaluate_predicts.py \
    $(pwd)/configs/eval2_gpu.yaml \
    $(pwd)/places_standard_dataset/evaluation/random_thick_512/ \
    $(pwd)/inference/random_thick_512 \
    $(pwd)/inference/random_thick_512_metrics.csv
    

    Docker: TODO

    CelebA

    On the host machine:

    # Make shure you are in lama folder
    cd lama
    export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd)
    # Download CelebA-HQ dataset
    # Download data256x256.zip from https://drive.google.com/drive/folders/11Vz0fqHS2rXDb5pprgTjpD7S2BAJhi1P
    # unzip & split into train/test/visualization & create config for it
    bash fetch_data/celebahq_dataset_prepare.sh
    # generate masks for test and visual_test at the end of epoch
    bash fetch_data/celebahq_gen_masks.sh
    # Run training
    python3 bin/train.py -cn lama-fourier-celeba data.batch_size=10
    # Infer model on thick/thin/medium masks in 256 and run evaluation 
    # like this:
    python3 bin/predict.py \
    model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier-celeba_/ \
    indir=$(pwd)/celeba-hq-dataset/visual_test_256/random_thick_256/ \
    outdir=$(pwd)/inference/celeba_random_thick_256 model.checkpoint=last.ckpt
    

    Docker: TODO

    Places Challenge

    On the host machine:

    # This script downloads multiple .tar files in parallel and unpacks them
    # Places365-Challenge: Train(476GB) from High-resolution images (to train Big-Lama) 
    bash places_challenge_train_download.sh
    TODO: prepare
    TODO: train 
    TODO: eval
    

    Docker: TODO

    Create your data

    Please check bash scripts for data preparation and mask generation from CelebaHQ section, if you stuck at one of the following steps.

    On the host machine:

    # Make shure you are in lama folder
    cd lama
    export TORCH_HOME=$(pwd) && export PYTHONPATH=$(pwd)
    # You need to prepare following image folders:
    $ ls my_dataset
    train
    val_source # 2000 or more images
    visual_test_source # 100 or more images
    eval_source # 2000 or more images
    # LaMa generates random masks for the train data on the flight,
    # but needs fixed masks for test and visual_test for consistency of evaluation.
    # Suppose, we want to evaluate and pick best models 
    # on 512x512 val dataset  with thick/thin/medium masks 
    # And your images have .jpg extention:
    python3 bin/gen_mask_dataset.py \
    $(pwd)/configs/data_gen/random_<size>_512.yaml \ # thick, thin, medium
    my_dataset/val_source/ \
    my_dataset/val/random_<size>_512.yaml \# thick, thin, medium
    --ext jpg
    # So the mask generator will: 
    # 1. resize and crop val images and save them as .png
    # 2. generate masks
    ls my_dataset/val/random_medium_512/
    image1_crop000_mask000.png
    image1_crop000.png
    image2_crop000_mask000.png
    image2_crop000.png
    # Generate thick, thin, medium masks for visual_test folder:
    python3 bin/gen_mask_dataset.py \
    $(pwd)/configs/data_gen/random_<size>_512.yaml \  #thick, thin, medium
    my_dataset/visual_test_source/ \
    my_dataset/visual_test/random_<size>_512/ \ #thick, thin, medium
    --ext jpg
    ls my_dataset/visual_test/random_thick_512/
    image1_crop000_mask000.png
    image1_crop000.png
    image2_crop000_mask000.png
    image2_crop000.png
    # Same process for eval_source image folder:
    python3 bin/gen_mask_dataset.py \
    $(pwd)/configs/data_gen/random_<size>_512.yaml \  #thick, thin, medium
    my_dataset/eval_source/ \
    my_dataset/eval/random_<size>_512/ \ #thick, thin, medium
    --ext jpg
    # Generate location config file which locate these folders:
    touch my_dataset.yaml
    echo "data_root_dir: $(pwd)/my_dataset/" >> my_dataset.yaml
    echo "out_root_dir: $(pwd)/experiments/" >> my_dataset.yaml
    echo "tb_dir: $(pwd)/tb_logs/" >> my_dataset.yaml
    mv my_dataset.yaml ${PWD}/configs/training/location/
    # Check data config for consistency with my_dataset folder structure:
    $ cat ${PWD}/configs/training/data/abl-04-256-mh-dist
    train:
      indir: ${location.data_root_dir}/train
      indir: ${location.data_root_dir}/val
      img_suffix: .png
    visual_test:
      indir: ${location.data_root_dir}/visual_test
      img_suffix: .png
    # Run training
    python3 bin/train.py -cn lama-fourier location=my_dataset data.batch_size=10
    # Evaluation: LaMa training procedure picks best few models according to 
    # scores on my_dataset/val/ 
    # To evaluate one of your best models (i.e. at epoch=32) 
    # on previously unseen my_dataset/eval do the following 
    # for thin, thick and medium:
    # infer:
    python3 bin/predict.py \
    model.path=$(pwd)/experiments/<user>_<date:time>_lama-fourier_/ \
    indir=$(pwd)/my_dataset/eval/random_<size>_512/ \
    outdir=$(pwd)/inference/my_dataset/random_<size>_512 \
    model.checkpoint=epoch32.ckpt
    # metrics calculation:
    python3 bin/evaluate_predicts.py \
    $(pwd)/configs/eval2_gpu.yaml \
    $(pwd)/my_dataset/eval/random_<size>_512/ \
    $(pwd)/inference/my_dataset/random_<size>_512 \
    $(pwd)/inference/my_dataset/random_<size>_512_metrics.csv
    

    OR in the docker:

    TODO: train
    TODO: eval
    

    Hints

    Generate different kinds of masks

    The following command will execute a script that generates random masks.

    bash docker/1_generate_masks_from_raw_images.sh \
        configs/data_gen/random_medium_512.yaml \
        /directory_with_input_images \
        /directory_where_to_store_images_and_masks \
        --ext png
    

    The test data generation command stores images in the format, which is suitable for prediction.

    The table below describes which configs we used to generate different test sets from the paper. Note that we do not fix a random seed, so the results will be slightly different each time.

    Feel free to change the config path (argument #1) to any other config in configs/data_gen or adjust config files themselves.

    Override parameters in configs

    Also you can override parameters in config like this:

    python3 bin/train.py -cn <config> data.batch_size=10 run_title=my-title
    

    Where .yaml file extension is omitted

    Models options

    Config names for models from paper (substitude into the training command):

    * big-lama
    * big-lama-regular
    * lama-fourier
    * lama-regular
    * lama_small_train_masks
    

    Which are seated in configs/training/folder

    Links

  • All the data (models, test images, etc.) https://disk.yandex.ru/d/AmdeG-bIjmvSug
  • Test images from the paper https://disk.yandex.ru/d/xKQJZeVRk5vLlQ
  • The pre-trained models https://disk.yandex.ru/d/EgqaSnLohjuzAg
  • The models for perceptual loss https://disk.yandex.ru/d/ncVmQlmT_kTemQ
  • Our training logs are available at https://disk.yandex.ru/d/9Bt1wNSDS4jDkQ
  • Training time & resources

    Acknowledgments

  • Segmentation code and models if form CSAILVision.
  • LPIPS metric is from richzhang
  • SSIM is from Po-Hsun-Su
  • FID is from mseitzer
  • Citation

    If you found this code helpful, please consider citing:

    @article{suvorov2021resolution,
      title={Resolution-robust Large Mask Inpainting with Fourier Convolutions},
      author={Suvorov, Roman and Logacheva, Elizaveta and Mashikhin, Anton and Remizova, Anastasia and Ashukha, Arsenii and Silvestrov, Aleksei and Kong, Naejin and Goka, Harshith and Park, Kiwoong and Lempitsky, Victor},
      journal={arXiv preprint arXiv:2109.07161},
      year={2021}
    
  •